Hiroshima Mathematical Journal

Martin boundary of a harmonic space with adjoint structure and its applications

Fumi-Yuki Maeda

Full-text: Open access

Article information

Hiroshima Math. J., Volume 21, Number 1 (1991), 163-186.

First available in Project Euclid: 21 March 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 31C35: Martin boundary theory [See also 60J50]
Secondary: 31B35: Connections with differential equations


Maeda, Fumi-Yuki. Martin boundary of a harmonic space with adjoint structure and its applications. Hiroshima Math. J. 21 (1991), no. 1, 163--186. doi:10.32917/hmj/1206128926. https://projecteuclid.org/euclid.hmj/1206128926

Export citation


  • [1] C. Constantinescu and A. Cornea, Potential Theory on Harmonic Spaces, Springer-Verlag, Berlin etc., 1972.
  • [2] J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer-Verlag, New York etc., 1984.
  • [3] K. Janssen, Martin boundary and Hp-theory of harmonic spaces, Seminar on Potential Theory, II, Lecture Notes Math. 226, Springer-Verlag, Berlin etc., 1971, 102-151.
  • [4] K. Janssen, On the existence of a Green function for harmonic spaces, Math. Ann. 208 (1974), 295-303.
  • [5] F-Y. Maeda, Harmonic and full-harmonic structures on a differentiable manifold, J. Sci. Hiroshima Univ., Ser. A-I, 34 (1970), 271-312.
  • [6] F-Y. Maeda, Dirichlet Integrals on Harmonic Spaces, Lecture Notes Math. 803, Springer-Verlag, Berlin etc., 1980.
  • [7] F-Y. Maeda, Dirichlet integral and energy of potentials on harmonic spaces with adjoint structure, Hiroshima Math. J. 18 (1988), 1-14.
  • [8] M. Sieveking, Integraldarstellung superharmonischer Funktionen mit Anwendung auf parabolische Differentialgleichungen, Seminar ber Potentialtheorie, Lecture Notes Math. 69, Springer-Verlag, Berlin etc., 1968, 13-68.