Hiroshima Mathematical Journal

Discrete subgroups of convergence type of ${\rm U}(1,n;{\bf C})$

Shigeyasu Kamiya

Full-text: Open access

Article information

Hiroshima Math. J., Volume 21, Number 1 (1991), 1-21.

First available in Project Euclid: 21 March 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 22E40: Discrete subgroups of Lie groups [See also 20Hxx, 32Nxx]
Secondary: 20H10: Fuchsian groups and their generalizations [See also 11F06, 22E40, 30F35, 32Nxx] 30F40: Kleinian groups [See also 20H10]


Kamiya, Shigeyasu. Discrete subgroups of convergence type of ${\rm U}(1,n;{\bf C})$. Hiroshima Math. J. 21 (1991), no. 1, 1--21. doi:10.32917/hmj/1206128921. https://projecteuclid.org/euclid.hmj/1206128921

Export citation


  • [1] L. V. Ahlfors, Mobius transformations in several dimensions, School of Mathematics, University of Minnesota, Minnesota, 1981.
  • [2] A. F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics 91, Springer, New York, Heidelberg, Berlin, 1983.
  • [3] S. S. Chen and L. Greenberg, Hyperbolic spaces, Contributions to Analysis, Academic Press, New York, (1974), 49-87.
  • [4] H. M. Farkas and I. Kra, Riemann surfaces, Graduate Texts in Mathematics 71, Springer, New York, Heidelberg, Berlin, 1980.
  • [5] J. B. Garnett, Bounded analytic functions, Academic Press, NewYork, 1981.
  • [6] S. Kamiya, On subgroups of convergence or divergence type of (7(1, n C). Math.J. Okayama Univ. 26 (1984), 179-191.
  • [7] S. Kamiya, On some series associated with discrete subgroups of (7(1, n; C), Math.J. Okayama Univ. 26 (1984), 193-197.
  • [8] J. Lehner, Discontinuous groups and automorphic functions, Mathematical Surveys, No. VIII, American Mathematical Society, Providence, 1964.
  • [9] W. Rudin, Function theory in the unit ball of C", Springer, New York, Heidelberg, Berlin, 1980.
  • [10] M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959.