Hiroshima Mathematical Journal

Royden compactification of integers

Janusz Wysoczański

Full-text: Open access

Article information

Hiroshima Math. J., Volume 26, Number 3 (1996), 515-529.

First available in Project Euclid: 21 March 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 54D35: Extensions of spaces (compactifications, supercompactifications, completions, etc.)
Secondary: 46J10: Banach algebras of continuous functions, function algebras [See also 46E25] 54D80: Special constructions of spaces (spaces of ultrafilters, etc.)


Wysoczański, Janusz. Royden compactification of integers. Hiroshima Math. J. 26 (1996), no. 3, 515--529. doi:10.32917/hmj/1206127256. https://projecteuclid.org/euclid.hmj/1206127256

Export citation


  • [1] W. W. Comfort and S. Negrepontis, The theory of ultrafilters, Springer Verlag, Berlin, 1974.
  • [2] C. Constantinescu and A. Cornea, Ideale Rander Riemannschen Flachen, Springer Verlag, Berlin, 1963.
  • [3] C. Rickart, General theory of Banach algebras, D. van Nostrand Co. Inc., Princeton,N.J., 1960.
  • [4] H. L. Royden, Harmonic functions on open Riemann surfaces, Trans. Amer. Math. Soc. 73 (1952), 40-94.
  • [5] H. L. Royden, On the ideal boundary of a Riemann surface, Ann. of Math. Studies, Princeton 30 (1953), 107-109.
  • [6] W. Rudin, Homogeneity problems in the theory of Cech compactification, Duke Math. J. (1956), 409-419; 633.
  • [7] L. Sario, M. Nakai, Classification theory of Riemann surfaces, Springer Verlag, Berlin, 1970.
  • [8] P. M. Soardi, Potential theory on infinite networks, Lecture Notes in Mathematics, 1590, Springer Verlag, Berlin, 1994.
  • [9] M. Yamasaki, Discrete Dirichlet potentials on an infinite networks, R.I.M.S. Kokyuroku 610 (1987), 51-66.