Hiroshima Mathematical Journal

Normal Gorenstein del Pezzo surfaces with quasi-lines

Mitsuhiro Yamasaki

Full-text: Open access

Abstract

In this paper, we give a classification of normal del Pezzo surfaces $X$ with at most three quasi-lines and determine the geometric structure of the complement of quasi-lines on $X$. Moreover, we give the complete list of compactifications $X$ of ${\Bbb C}^2$ with quasi-lines as boundaries.

Article information

Source
Hiroshima Math. J., Volume 37, Number 2 (2007), 253-275.

Dates
First available in Project Euclid: 24 August 2007

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1187916320

Digital Object Identifier
doi:10.32917/hmj/1187916320

Mathematical Reviews number (MathSciNet)
MR2345369

Zentralblatt MATH identifier
1137.14032

Subjects
Primary: 14R10: Affine spaces (automorphisms, embeddings, exotic structures, cancellation problem) 14J17: Singularities [See also 14B05, 14E15] 14J26: Rational and ruled surfaces

Keywords
Compactification rational surface

Citation

Yamasaki, Mitsuhiro. Normal Gorenstein del Pezzo surfaces with quasi-lines. Hiroshima Math. J. 37 (2007), no. 2, 253--275. doi:10.32917/hmj/1187916320. https://projecteuclid.org/euclid.hmj/1187916320


Export citation