Homology, Homotopy and Applications

Erratum to "Adding inverses to diagrams encoding algebraic structures" and "Adding inverses to diagrams II: Invertible homotopy theories are spaces"

Julia E. Bergner

Full-text: Open access

Abstract

In this note, we correct an error in one of our approaches to encode a group structure by a diagram. We show that we instead obtain the structure of a monoid with involution.

Article information

Source
Homology Homotopy Appl., Volume 14, Number 1 (2012), 287-291.

Dates
First available in Project Euclid: 12 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.hha/1355321076

Mathematical Reviews number (MathSciNet)
MR2954678

Zentralblatt MATH identifier
1241.55012

Subjects
Primary: 55U35: Abstract and axiomatic homotopy theory 18G30: Simplicial sets, simplicial objects (in a category) [See also 55U10] 18E35: Localization of categories

Keywords
Segal category Segal monoid complete Segal space monoid with involution

Citation

Bergner, Julia E. Erratum to "Adding inverses to diagrams encoding algebraic structures" and "Adding inverses to diagrams II: Invertible homotopy theories are spaces". Homology Homotopy Appl. 14 (2012), no. 1, 287--291. https://projecteuclid.org/euclid.hha/1355321076


Export citation

See also

  • See: Julia E. Bergner. Adding inverses to diagrams encoding algebraic structures. Homology, Homotopy Appl., vol. 10, no. 2 (2008), p. 149-174.
  • See: Julia E. Bergner. Adding inverses to diagrams II: Invertible homotopy theories are spaces. Homology, Homotopy Appl., vol. 10, no. 2 (2008), p. 175-193.