Homology, Homotopy and Applications

The Brown-Golasiński model structure on strict ∞-groupoids revisited

Dimitri Ara and François Métayer

Full-text: Open access

Abstract

We prove that the folk model structure on strict $\infty$-categories transfers to the category of strict $\infty$-groupoids (and more generally to the category of strict $(\infty; n)$-categories), and that the resulting model structure on strict $\infty$-groupoids coincides with the one defined by Brown and Golasiński via crossed complexes.

Article information

Source
Homology Homotopy Appl., Volume 13, Number 1 (2011), 121-142.

Dates
First available in Project Euclid: 29 July 2011

Permanent link to this document
https://projecteuclid.org/euclid.hha/1311953349

Mathematical Reviews number (MathSciNet)
MR2803870

Zentralblatt MATH identifier
1218.18004

Subjects
Primary: 18D05: Double categories, 2-categories, bicategories and generalizations 18G55: Homotopical algebra 55U35: Abstract and axiomatic homotopy theory

Keywords
$\infty$-category $\infty$-groupoid crossed complex model category

Citation

Ara, Dimitri; Métayer, François. The Brown-Golasiński model structure on strict ∞-groupoids revisited. Homology Homotopy Appl. 13 (2011), no. 1, 121--142. https://projecteuclid.org/euclid.hha/1311953349


Export citation