## Homology, Homotopy and Applications

- Homology Homotopy Appl.
- Volume 9, Number 1 (2007), 295-329.

### On the homotopy type and the fundamental crossed complex of the skeletal filtration of a CW-complex

#### Abstract

We prove that if $M$ is a CW-complex, then the homotopy type of the skeletal filtration of $M$ does not depend on the cell decomposition of $M$ up to wedge products with $n$-disks Dn, when the latter are given their natural CW-decomposition with unique cells of order $0, (n - 1$) and $n$, a result resembling J.H.C. Whitehead’s work on simple homotopy types. From the higher homotopy van Kampen Theorem (due to R. Brown and P.J. Higgins) follows an algebraic analogue for the fundamental crossed complex II$(M)$ of the skeletal filtration of $M$, which thus depends only on the homotopy type of $M$ (as a space) up to free product with crossed complexes of the type $\mathcal{D}^n \doteq \Pi (D^n), n \in \mathbb{N}$.This expands an old result (due to J.H.C. Whitehead) asserting that the homotopy type of $\Pi(M)$ depends only on the homotopy type of M. We use these results to define a homotopy invariant $I_{\mathcal{A}}$ of CW-complexes for each finite crossed complex $\mathcal{A}$. We interpret it in terms of the weak homotopy type of the function space $TOP ((M, *), (|\mathcal{A}|, *))$ where $|\mathcal{A}|$ is the classifying space of the crossed complex $\mathcal{A}$.

#### Article information

**Source**

Homology Homotopy Appl., Volume 9, Number 1 (2007), 295-329.

**Dates**

First available in Project Euclid: 5 April 2007

**Permanent link to this document**

https://projecteuclid.org/euclid.hha/1175791098

**Mathematical Reviews number (MathSciNet)**

MR2299802

**Zentralblatt MATH identifier**

1114.55002

**Subjects**

Primary: 55P10: Homotopy equivalences 55Q05: Homotopy groups, general; sets of homotopy classes 57M27: Invariants of knots and 3-manifolds

**Keywords**

CW-complex skeletal filtration crossed complex higher homotopy van Kampen Theorem invariants of homotopy types

#### Citation

Martins, Joã0 Faria. On the homotopy type and the fundamental crossed complex of the skeletal filtration of a CW-complex. Homology Homotopy Appl. 9 (2007), no. 1, 295--329. https://projecteuclid.org/euclid.hha/1175791098