Homology, Homotopy and Applications

Strict modules and homotopy modules in stable homotopy

Javier J. Gutiérrez

Full-text: Open access

Abstract

Let $R$ be any associative ring with unit and let $HR$ denote thecorresponding Eilenberg--Mac Lane spectrum. We show that thecategory of algebras over the monad $X\mapsto HR\wedge X$ on thehomotopy category of spectra is equivalent to the homotopycategory associated to a model category of $HR$-module spectra, ifthe ring $R$ is a field or a subring of the rationals, but not forall rings.

Article information

Source
Homology Homotopy Appl., Volume 7, Number 1 (2005), 39-49.

Dates
First available in Project Euclid: 13 February 2006

Permanent link to this document
https://projecteuclid.org/euclid.hha/1139839505

Mathematical Reviews number (MathSciNet)
MR2138349

Zentralblatt MATH identifier
1080.55008

Subjects
Primary: 55P43: Spectra with additional structure ($E_\infty$, $A_\infty$, ring spectra, etc.)
Secondary: 18E30: Derived categories, triangulated categories 55P42: Stable homotopy theory, spectra

Citation

Gutiérrez, Javier J. Strict modules and homotopy modules in stable homotopy. Homology Homotopy Appl. 7 (2005), no. 1, 39--49. https://projecteuclid.org/euclid.hha/1139839505


Export citation