Geometry & Topology

Rotation intervals and entropy on attracting annular continua

Alejandro Passeggi, Rafael Potrie, and Martín Sambarino

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/gt.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We show that if f is an annular homeomorphism admitting an attractor which is an irreducible annular continua with two different rotation numbers, then the entropy of  f is positive. Further, the entropy is shown to be associated to a C 0 –robust rotational horseshoe. On the other hand, we construct examples of annular homeomorphisms with such attractors for which the rotation interval is uniformly large but the entropy approaches zero as much as desired.

The developed techniques allow us to obtain similar results in the context of Birkhoff attractors.

Article information

Source
Geom. Topol., Volume 22, Number 4 (2018), 2145-2186.

Dates
Received: 18 July 2016
Revised: 22 May 2017
Accepted: 1 October 2017
First available in Project Euclid: 13 April 2018

Permanent link to this document
https://projecteuclid.org/euclid.gt/1523584819

Digital Object Identifier
doi:10.2140/gt.2018.22.2145

Mathematical Reviews number (MathSciNet)
MR3784518

Zentralblatt MATH identifier
06864334

Subjects
Primary: 37E30: Homeomorphisms and diffeomorphisms of planes and surfaces
Secondary: 37B40: Topological entropy 37B45: Continua theory in dynamics 37E45: Rotation numbers and vectors 54H20: Topological dynamics [See also 28Dxx, 37Bxx]

Keywords
rotation number entropy annular continua surface homeomorphisms horseshoes

Citation

Passeggi, Alejandro; Potrie, Rafael; Sambarino, Martín. Rotation intervals and entropy on attracting annular continua. Geom. Topol. 22 (2018), no. 4, 2145--2186. doi:10.2140/gt.2018.22.2145. https://projecteuclid.org/euclid.gt/1523584819


Export citation

References

  • R H Abraham, H B Stewart, A chaotic blue sky catastrophe in forced relaxation oscillations, Phys. D 21 (1986) 394–400
  • M U Akhmet, M O Fen, Entrainment by chaos, J. Nonlinear Sci. 24 (2014) 411–439
  • L Alsedà, J Llibre, F Mañosas, M Misiurewicz, Lower bounds of the topological entropy for continuous maps of the circle of degree one, Nonlinearity 1 (1988) 463–479
  • M-C Arnaud, C Bonatti, S Crovisier, Dynamiques symplectiques génériques, Ergodic Theory Dynam. Systems 25 (2005) 1401–1436
  • M Barge, R M Gillette, Rotation and periodicity in plane separating continua, Ergodic Theory Dynam. Systems 11 (1991) 619–631
  • F Beguín, Ensembles de rotations des homéomorphismes du tore $\mathbb{T}^2$, lecture notes (2007) Available at \setbox0\makeatletter\@url https://www.math.univ-paris13.fr/~beguin/Publications_files/cours-2.pdf {\unhbox0
  • G D Birkhoff, Sur quelques courbes fermées remarquables, Bull. Soc. Math. France 60 (1932) 1–26 Reprinted in “Collected mathematical papers, II: Dynamics (continued), physical theories”, Amer. Math. Soc., New York (1950) 444-461
  • C Bonatti, S Crovisier, Récurrence et généricité, Invent. Math. 158 (2004) 33–104
  • C Bonatti, L J Díaz, E R Pujals, A $C^1$–generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. 158 (2003) 355–418
  • J P Boroński, P Oprocha, Rotational chaos and strange attractors on the $2$–torus, Math. Z. 279 (2015) 689–702
  • H W Broer, KAM theory: the legacy of A N Kolmogorov's 1954 paper, Bull. Amer. Math. Soc. 41 (2004) 507–521
  • A Chenciner, Poincaré and the three-body problem, from “Henri Poincaré, 1912–2012” (B Duplantier, V Rivasseau, editors), Prog. Math. Phys. 67, Springer (2015) 51–149
  • S Crovisier, Perturbation of $C^1$–diffeomorphisms and generic conservative dynamics on surfaces, from “Dynamique des difféomorphismes conservatifs des surfaces: un point de vue topologique”, Panor. Synthèses 21, Soc. Math. France, Paris (2006) 1–33
  • J Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc. 158 (1971) 301–308
  • J Franks, Rotation vectors for surface diffeomorphisms, from “Proceedings of the International Congress of Mathematicians” (S D Chatterji, editor), volume II, Birkhäuser, Basel (1995) 1179–1186
  • J Franks, M Handel, Entropy zero area preserving diffeomorphisms of $S^2$, Geom. Topol. 16 (2012) 2187–2284
  • J Franks, P Le Calvez, Regions of instability for non-twist maps, Ergodic Theory Dynam. Systems 23 (2003) 111–141
  • M Girard, Sur les courbes invariantes par un difféomorphisme $C^1$–générique symplectique d'une surface, PhD thesis, Université d'Avignon (2009) Available at \setbox0\makeatletter\@url https://tel.archives-ouvertes.fr/tel-00461234/ {\unhbox0
  • J G Hocking, G S Young, Topology, Addison-Wesley, Reading, MA (1961)
  • T Jäger, Linearization of conservative toral homeomorphisms, Invent. Math. 176 (2009) 601–616
  • T Jäger, A Passeggi, On torus homeomorphisms semiconjugate to irrational rotations, Ergodic Theory Dynam. Systems 35 (2015) 2114–2137
  • A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications 54, Cambridge Univ. Press (1995)
  • J Kennedy, J A Yorke, Topological horseshoes, Trans. Amer. Math. Soc. 353 (2001) 2513–2530
  • A Koropecki, Realizing rotation numbers on annular continua, Math. Z. 285 (2017) 549–564
  • A Koropecki, P Le Calvez, M Nassiri, Prime ends rotation numbers and periodic points, Duke Math. J. 164 (2015) 403–472
  • A Koropecki, A Passeggi, A Poincaré–Bendixson theorem for translation lines and applications to prime ends, preprint (2017)
  • J M Kwapisz, Rotation sets and entropy, PhD thesis, State University of New York at Stony Brook (1995) Available at \setbox0\makeatletter\@url https://search.proquest.com/docview/304251332 {\unhbox0
  • P Le Calvez, Propriétés des attracteurs de Birkhoff, Ergodic Theory Dynam. Systems 8 (1988) 241–310
  • P Le Calvez, Une version feuilletée équivariante du théorème de translation de Brouwer, Publ. Math. Inst. Hautes Études Sci. 102 (2005) 1–98
  • P Le Calvez, F A Tal, Forcing theory for transverse trajectories of surface homeomorphisms, preprint (2015)
  • J Llibre, R S MacKay, Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity, Ergodic Theory Dynam. Systems 11 (1991) 115–128
  • J N Mather, Topological proofs of some purely topological consequences of Carathéodory's theory of prime ends, from “Selected studies: physics-astrophysics, mathematics, history of science” (T M Rassias, G M Rassias, editors), North-Holland, Amsterdam (1982) 225–255
  • S Matsumoto, Prime end rotation numbers of invariant separating continua of annular homeomorphisms, Proc. Amer. Math. Soc. 140 (2012) 839–845
  • J W Milnor, Attractor, Scholarpedia 1 (2006) art. id. 1815
  • M Misiurewicz, K Ziemian, Rotation sets for maps of tori, J. London Math. Soc. 40 (1989) 490–506
  • M H A Newman, Elements of the topology of plane sets of points, 2nd edition, Cambridge Univ. Press (1951)
  • A Passeggi, Contributions in surface dynamics: a classification of minimal sets of homeomorphisms and aspects of the rotation theory on the torus, PhD thesis, Friedrich-Alexander-Universität, Erlangen (2013) Available at \setbox0\makeatletter\@url https://d-nb.info/1064996493/34 {\unhbox0
  • A Passeggi, J Xavier, A classification of minimal sets for surface homeomorphisms, Math. Z. 278 (2014) 1153–1177
  • R Shaw, Strange attractors, chaotic behavior, and information flow, Z. Naturforsch. A 36 (1981) 80–112
  • M Shub, All, most, some differentiable dynamical systems, from “Proceedings of the International Congress of Mathematicians” (M Sanz-Solé, J Soria, J L Varona, J Verdera, editors), volume III, Eur. Math. Soc., Zürich (2006) 99–120
  • J M T Thompson, H B Stewart, Nonlinear dynamics and chaos, 2nd edition, Wiley, Chichester (2002)
  • R B Walker, Periodicity and decomposability of basin boundaries with irrational maps on prime ends, Trans. Amer. Math. Soc. 324 (1991) 303–317