Geometry & Topology

Unfolded Seiberg–Witten Floer spectra, I: Definition and invariance

Tirasan Khandhawit, Jianfeng Lin, and Hirofumi Sasahira

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let Y be a closed and oriented 3 –manifold. We define different versions of unfolded Seiberg–Witten Floer spectra for Y . These invariants generalize Manolescu’s Seiberg–Witten Floer spectrum for rational homology 3 –spheres. We also compute some examples when Y is a Seifert space.

Article information

Geom. Topol., Volume 22, Number 4 (2018), 2027-2114.

Received: 20 May 2016
Revised: 18 June 2017
Accepted: 22 July 2017
First available in Project Euclid: 13 April 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 57R57: Applications of global analysis to structures on manifolds, Donaldson and Seiberg-Witten invariants [See also 58-XX]
Secondary: 57R58: Floer homology

3-manifolds Floer homotopy Seiberg–Witten theory Conley index


Khandhawit, Tirasan; Lin, Jianfeng; Sasahira, Hirofumi. Unfolded Seiberg–Witten Floer spectra, I: Definition and invariance. Geom. Topol. 22 (2018), no. 4, 2027--2114. doi:10.2140/gt.2018.22.2027.

Export citation


  • J F Adams, Prerequisites (on equivariant stable homotopy) for Carlsson's lecture, from “Algebraic topology” (I Madsen, B Oliver, editors), Lecture Notes in Math. 1051, Springer (1984) 483–532
  • M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43–69
  • S Bauer, A stable cohomotopy refinement of Seiberg–Witten invariants, II, Invent. Math. 155 (2004) 21–40
  • R L Cohen, J D S Jones, G B Segal, Floer's infinite-dimensional Morse theory and homotopy theory, from “The Floer memorial volume” (H Hofer, C H Taubes, A Weinstein, E Zehnder, editors), Progr. Math. 133, Birkhäuser, Basel (1995) 297–325
  • C Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics 38, Amer. Math. Soc., Providence, RI (1978)
  • O Cornea, Homotopical dynamics: suspension and duality, Ergodic Theory Dynam. Systems 20 (2000) 379–391
  • T tom Dieck, Transformation groups, De Gruyter Studies in Mathematics 8, de Gruyter, Berlin (1987)
  • A Floer, A refinement of the Conley index and an application to the stability of hyperbolic invariant sets, Ergodic Theory Dynam. Systems 7 (1987) 93–103
  • A Floer, An instanton-invariant for $3$–manifolds, Comm. Math. Phys. 118 (1988) 215–240
  • M Furuta, Monopole equation and the $\frac{11}8$–conjecture, Math. Res. Lett. 8 (2001) 279–291
  • M Furuta, T-J Li, Intersection form of spin $4$–manifolds with boundary, preprint (2014)
  • A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)
  • T Khandhawit, Twisted Manolescu–Floer spectra for Seiberg–Witten monopoles, PhD thesis, MIT (2013) Available at \setbox0\makeatletter\@url {\unhbox0
  • T Khandhawit, J Lin, H Sasahira, The unfolded Seiberg–Witten–Floer spectra, II, in preparation
  • T Khandhawit, J Lin, H Sasahira, The unfolded Seiberg–Witten–Floer spectra, III, in preparation
  • P B Kronheimer, C Manolescu, Periodic Floer pro-spectra from the Seiberg–Witten equations, preprint (2002)
  • P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Mathematical Monographs 10, Cambridge Univ. Press (2007)
  • L G Lewis, Jr, J P May, M Steinberger, J E McClure, Equivariant stable homotopy theory, Lecture Notes in Math. 1213, Springer (1986)
  • T Lidman, C Manolescu, The equivalence of two Seiberg–Witten Floer homologies, preprint (2016)
  • F Lin, A Morse–Bott approach to monopole Floer homology and the triangulation conjecture, preprint (2014) To appear in Mem. Amer. Math. Soc.
  • J Lin, $\mathrm{Pin}(2)$–equivariant KO-theory and intersection forms of spin $4$–manifolds, Algebr. Geom. Topol. 15 (2015) 863–902
  • C Manolescu, Seiberg–Witten–Floer stable homotopy type of three-manifolds with $b_1=0$, Geom. Topol. 7 (2003) 889–932
  • C Manolescu, On the intersection forms of spin four-manifolds with boundary, Math. Ann. 359 (2014) 695–728
  • C Manolescu, $\mathrm{Pin}(2)$–equivariant Seiberg–Witten Floer homology and the triangulation conjecture, J. Amer. Math. Soc. 29 (2016) 147–176
  • J P May, Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics 91, Amer. Math. Soc., Providence, RI (1996)
  • T Mrowka, P Ozsváth, B Yu, Seiberg–Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997) 685–791
  • L I Nicolaescu, Eta invariants of Dirac operators on circle bundles over Riemann surfaces and virtual dimensions of finite energy Seiberg–Witten moduli spaces, Israel J. Math. 114 (1999) 61–123
  • L I Nicolaescu, Finite energy Seiberg–Witten moduli spaces on $4$–manifolds bounding Seifert fibrations, Comm. Anal. Geom. 8 (2000) 1027–1096
  • M Q Ouyang, Geometric invariants for Seifert fibred $3$–manifolds, Trans. Amer. Math. Soc. 346 (1994) 641–659
  • P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159–1245
  • A M Pruszko, The Conley index for flows preserving generalized symmetries, from “Conley index theory” (K Mischaikow, M Mrozek, P Zgliczyński, editors), Banach Center Publ. 47, Polish Acad. Sci. Inst. Math., Warsaw (1999) 193–217
  • K P Rybakowski, On the homotopy index for infinite-dimensional semiflows, Trans. Amer. Math. Soc. 269 (1982) 351–382
  • D Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985) 1–41
  • H Sasahira, Gluing formula for the stable cohomotopy version of Seiberg–Witten invariants along $3$–manifolds with $b_1 > 0$, preprint (2014)
  • E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769–796