Geometry & Topology

Units of ring spectra and their traces in algebraic $K$–theory

Christian Schlichtkrull

Full-text: Open access

Abstract

Let GL1(R) be the units of a commutative ring spectrum R. In this paper we identify the composition

η R : B G L 1 ( R ) K ( R ) THH ( R ) Ω ( R ) ,

where K(R) is the algebraic K–theory and THH(R) the topological Hochschild homology of R. As a corollary we show that classes in πi1R not annihilated by the stable Hopf map ηπ1s(S0) give rise to non-trivial classes in Ki(R) for i3.

Article information

Source
Geom. Topol., Volume 8, Number 2 (2004), 645-673.

Dates
Received: 25 November 2003
Revised: 21 April 2004
Accepted: 13 March 2004
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513883412

Digital Object Identifier
doi:10.2140/gt.2004.8.645

Mathematical Reviews number (MathSciNet)
MR2057776

Zentralblatt MATH identifier
1052.19001

Subjects
Primary: 19D55: $K$-theory and homology; cyclic homology and cohomology [See also 18G60] 55P43: Spectra with additional structure ($E_\infty$, $A_\infty$, ring spectra, etc.)
Secondary: 19D10: Algebraic $K$-theory of spaces 55P48: Loop space machines, operads [See also 18D50]

Keywords
ring spectra algebraic K-theory topological Hochschild homology

Citation

Schlichtkrull, Christian. Units of ring spectra and their traces in algebraic $K$–theory. Geom. Topol. 8 (2004), no. 2, 645--673. doi:10.2140/gt.2004.8.645. https://projecteuclid.org/euclid.gt/1513883412


Export citation

References

  • C Ausoni, J Rognes, Algebraic K-theory of topological K-theory, Acta. Math. 188 (2002) 1–39
  • N A Baas, B I Dundas, J Rognes, Two-vector bundles and forms of elliptic cohomology, to appear in: “Topology, Geometry and Quantum Field Theory (Proceedings of the Segal Birthday Conference)”, Cambridge University Press
  • M Barratt, P Eccles, $\Gamma^+$-structures-I:A free group functor for stable homotopy theory, Topology 13 (1974) 25–45
  • A K Bousfield, E M Friedlander, Homotopy theory of $\Gamma$-spaces, spectra, and bisimplicial sets, from: “Geometric applications of homotopy theory (Proc. Conf. Evanstone, Ill, 1977) II”, (M G Barratt, M E Mahowald editors) Springer Lecture Notes in Math. vol. 658, Springer, Berlin (1978) 80-130
  • A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Springer Lecture Notes in Math. Vol. 304, Springer, Berlin (1972)
  • M Bökstedt, Topological Hochschild homology, preprint, Bielefeld (1985)
  • M Bökstedt, W C Hsiang, I Madsen, The cyclotomic trace and algebraic K-theory of spaces, Invent. Math. 111 (1993) 465–540
  • M Bökstedt, F Waldhausen, The map $BSG\to A(*)\to Q(S^0)$, from: “Algebraic topology and algebraic K-Theory, (Princeton, N. J, 1983)” Ann. of Math. Stud. 113, Princeton University Press (1987) 418–431
  • M Brun, Topological Hochschild homology of $\mathbb Z/p^n$, J. Pure Appl. Algebra 148 (2000) 29–76
  • B Dundas, The cyclotomic trace for symmetric monoidal categories, from: “Geometry and topology: Aarhus (1996)” Contemp. Math. 258 (2000) 121–143
  • B Dundas, R McCarthy, Topological Hochschild homology of ring functors and exact categories, J. Pure Appl. Algebra 109 (1996) 231–294
  • M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149–208
  • J D S Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987) 403–423
  • S Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics, vol. 5, Springer-Verlag (1971)
  • I Madsen, Algebraic K-theory and traces, from: “Current developments in mathematics”, Internat. Press, Cambridge, MA (1994) 191–321
  • M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441–512
  • J P May, The geometry of iterated loop spaces, Springer Lecture Notes in Math. vol. 271, Springer, Berlin (1972)
  • J P May, F Quinn, N Ray, with contributions by J Tornehave, $E_{\infty}$ ring spaces and $E_{\infty}$ ring spectra, Lecture Notes in Math. vol. 577, Springer, Berlin (1977)
  • G Segal, Categories and cohomology theories, Topology 13 (1974) 293-312
  • F Waldhausen, Algebraic K-theory of topological spaces I, from: “Algebraic and geometric topology (Proc. Symp. Pure Math. Stanford Calif. 1976) Part 1”, Proc. Sympos. Pure Math. vol. 32 (1978) 35–60
  • F Waldhausen, Algebraic K-theory of spaces, a manifold approach, from: “Current trends in algebraic topology, Part 1 (London, Ont, 1961)” CMS Conf Proc. 2 (1982) 141–184
  • G W Whitehead, Elements of homotopy theory, Graduate Text in Mathematics, vol. 61, Springer-Verlag (1978)