Geometry & Topology

Formal groups and stable homotopy of commutative rings

Stefan Schwede

Full-text: Open access

Abstract

We explain a new relationship between formal group laws and ring spectra in stable homotopy theory. We study a ring spectrum denoted DB which depends on a commutative ring B and is closely related to the topological André–Quillen homology of B. We present an explicit construction which to every 1–dimensional and commutative formal group law F over B associates a morphism of ring spectra F:HDB from the Eilenberg–MacLane ring spectrum of the integers. We show that formal group laws account for all such ring spectrum maps, and we identify the space of ring spectrum maps between H and DB. That description involves formal group law data and the homotopy units of the ring spectrum DB.

Article information

Source
Geom. Topol., Volume 8, Number 1 (2004), 335-412.

Dates
Received: 12 July 2003
Revised: 12 February 2004
Accepted: 30 January 2004
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513883370

Digital Object Identifier
doi:10.2140/gt.2004.8.335

Mathematical Reviews number (MathSciNet)
MR2033483

Zentralblatt MATH identifier
1056.55012

Subjects
Primary: 55U35: Abstract and axiomatic homotopy theory
Secondary: 14L05: Formal groups, $p$-divisible groups [See also 55N22]

Keywords
ring spectrum formal group law André–Quillen homology

Citation

Schwede, Stefan. Formal groups and stable homotopy of commutative rings. Geom. Topol. 8 (2004), no. 1, 335--412. doi:10.2140/gt.2004.8.335. https://projecteuclid.org/euclid.gt/1513883370


Export citation

References

  • M Basterra, André-Quillen cohomology of commutative ${S}$–algebras, J. Pure Appl. Algebra 144 (1999) 111–143
  • M Basterra, R McCarthy, $\Gamma$-homology, topological André-Quillen homology and stabilization, Topology Appl. 121 (2002) 551–566
  • M Basterra, B Richter, (Co-)homology theories for commutative ($S$-)algebras, from: “Structured Ring Spectra”, (A Baker, B Richter, editors), to appear in London Mathematical Society Lecture Notes, Cambridge University Press
  • S Betley, T Pirashvili, Stable ${K}$–theory as a derived functor, J. Pure Appl. Algebra 96 (1994) 245–258
  • M B ökstedt, Topological Hochschild homology (1985), preprint, Bielefeld
  • F Borceux, Handbook of Categorical Algebra 2: Categories and Structures, volume 51 of Encyclopedia of Mathematics and its Applications, Cambridge University Press (1994)
  • A K Bousfield, Operations on Derived Functors of Non-additive Functors (1967), mimeographed Notes, Brandeis University
  • A K Bousfield, E M Friedlander, Homotopy theory of ${\Gamma}$–spaces, spectra, and bisimplicial sets, from: “Geometric Applications of Homotopy Theory II”, Lecture Notes in Mathematics 658, Springer (1978) 80–130
  • A K Bousfield, D M Kan, Homotopy limits, completions and localizations, volume 304 of Lecture Notes in Mathematics, Springer (1972)
  • H Cartan, Algébres d'Eilenberg–MacLane et homotopie (1954-55), seminaire Henri Cartan
  • A Dold, D Puppe, Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier Grenoble 11 (1961) 201–312
  • W G Dwyer, Homotopy operations for simplicial commutative algebras, Trans. Amer. Math. Soc. 260 (1980) 421–435
  • W G Dwyer, J Spalinski, Homotopy theories and model categories, from: “Handbook of algebraic topology”, (I M James, editor), North-Holland, Amsterdam (1995) 73–126
  • S Eilenberg, S MacLane, Homology theories for multiplicative systems, Trans. Amer. Math. Soc. 71 (1951) 294–330
  • S Eilenberg, S MacLane, On the groups $H(\pi,n)$, II, Ann. Math. 60 (1954) 49–139
  • V Franjou, Extensions entre puissances extérieures et entre puissances symétriques, J. Algebra 179 (1996) 501–522
  • V Franjou, J Lannes, L Schwartz, Autour de la cohomologie de Mac Lane des corps finis, Invent. Math. 115 (1994) 513–538
  • V Franjou, T Pirashvili, On the MacLane cohomology for the ring of integers, Topology 37 (1998) 109–114
  • A Fr öhlich, Formal groups, volume 74 of Lecture Notes in Mathematics, Springer-Verlag, Berlin (1968)
  • P G Goerss, A Hilton-Milnor theorem for categories of simplicial algebras, Amer. J. Math. 111 (1989) 927–971
  • P G Goerss, On the André–Quillen cohomology of commutative ${\mathbb F}_2$-algebras, Asterisque 186 (1990)
  • P G Goerss, J F Jardine, Simplicial homotopy theory, Birkhäuser Verlag, Basel (1999)
  • M Hovey, Model categories, American Mathematical Society, Providence, RI (1999)
  • M Hovey, B E Shipley, J H Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149–208
  • L Illusie, Complexe cotangent et déformations. I, volume 239 of Lecture Notes in Mathematics, Springer-Verlag, Berlin (1971)
  • M Jibladze, T Pirashvili, Cohomology of algebraic theories, J. Algebra 137 (1991) 253–296
  • B Johnson, R McCarthy, Linearization, Dold-Puppe stabilization, and Mac Lane's ${Q}$–construction, Trans. Amer. Math. Soc. 350 (1998) 1555–1593
  • M Lazard, Sur les groupes de Lie formels à un paramètre, Bull. Soc. Math. France 83 (1955) 251–274
  • M Lydakis, Smash products and $\Gamma$-spaces, Math. Proc. Cambridge Philos. Soc. 126 (1999) 311–328
  • S MacLane, Homologie des anneaux et des modules, from: “Colloque de topologie algébrique, Louvain, 1956”, Georges Thone, Liège (1957) 55–80
  • S MacLane, Categories for the working mathematician, Springer (1971)
  • M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. (3) 82 (2001) 441–512
  • D McDuff, On the classifying spaces of discrete monoids, Topology 18 (1979) 313–320
  • T Pirashvili, Higher additivizations, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 91 (1988) 44–54
  • T Pirashvili, Polynomial approximation of Ext and Tor groups in functor categories, Comm. Algebra 21 (1993) 1705–1719
  • T Pirashvili, B Richter, Robinson-Whitehouse complex and stable homotopy, Topology 39 (2000) 525–530
  • T Pirashvili, F Waldhausen, MacLane homology and topological Hochschild homology, J. Pure Appl. Algebra 82 (1992) 81–98
  • D Quillen, On the (co-) homology of commutative rings, from: “Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968)”, Amer. Math. Soc., Providence, R.I. (1970) 65–87
  • D G Quillen, Homotopical Algebra, volume 43 of Lecture Notes in Mathematics, Springer (1967)
  • C L Reedy, Homotopy theory of model categories, preprint, 1973.
  • A Robinson, Gamma homology, Lie representations and $E\sb \infty$ multiplications, Invent. Math. 152 (2003) 331–348
  • A Robinson, S Whitehouse, Operads and $\Gamma$-homology of commutative rings, Math. Proc. Cambridge Philos. Soc. 132 (2002) 197–234
  • S Schwede, Spectra in model categories and applications to the algebraic cotangent complex, J. Pure Appl. Algebra 120 (1997) 77–104
  • S Schwede, Stable homotopical algebra and $\Gamma$-spaces, Math. Proc. Cambridge Philos. Soc. 126 (1999) 329–356
  • S Schwede, ${S}$–modules and symmetric spectra, Math. Ann. 319 (2001) 517–532
  • S Schwede, Stable homotopy of algebraic theories, Topology 40 (2001) 1–41
  • S Schwede, B E Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. (3) 80 (2000) 491–511
  • G Segal, Categories and cohomology theories, Topology 13 (1974) 293–312
  • B Shipley, Symmetric spectra and topological Hochschild homology, $K$–Theory 19 (2000) 155–183
  • D Simson, Stable derived functors of the second symmetric power functor, second exterior power functor and Whitehead gamma functor, Colloq. Math. 32 (1974) 49–55
  • J M Turner, Simplicial commutative $\mathbf{F}_p$–algebras through the looking-glass of $\mathbf{F}_p$–local spaces, from: “Homotopy invariant algebraic structures (Baltimore, MD, 1998)”, Amer. Math. Soc., Providence, RI (1999) 353–363