Geometry & Topology

Holomorphic disks and genus bounds

Peter Ozsvath and Zoltan Szabo

Full-text: Open access

Abstract

We prove that, like the Seiberg–Witten monopole homology, the Heegaard Floer homology for a three-manifold determines its Thurston norm. As a consequence, we show that knot Floer homology detects the genus of a knot. This leads to new proofs of certain results previously obtained using Seiberg–Witten monopole Floer homology (in collaboration with Kronheimer and Mrowka). It also leads to a purely Morse-theoretic interpretation of the genus of a knot. The method of proof shows that the canonical element of Heegaard Floer homology associated to a weakly symplectically fillable contact structure is non-trivial. In particular, for certain three-manifolds, Heegaard Floer homology gives obstructions to the existence of taut foliations.

Article information

Source
Geom. Topol., Volume 8, Number 1 (2004), 311-334.

Dates
Received: 3 December 2003
Revised: 12 February 2004
Accepted: 14 February 2004
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513883369

Digital Object Identifier
doi:10.2140/gt.2004.8.311

Mathematical Reviews number (MathSciNet)
MR2023281

Zentralblatt MATH identifier
1056.57020

Subjects
Primary: 57R58: Floer homology 53D40: Floer homology and cohomology, symplectic aspects
Secondary: 57M27: Invariants of knots and 3-manifolds 57N10: Topology of general 3-manifolds [See also 57Mxx]

Keywords
Thurston norm Dehn surgery Seifert genus Floer homology contact structures

Citation

Ozsvath, Peter; Szabo, Zoltan. Holomorphic disks and genus bounds. Geom. Topol. 8 (2004), no. 1, 311--334. doi:10.2140/gt.2004.8.311. https://projecteuclid.org/euclid.gt/1513883369


Export citation

References

  • S Akbulut, B Ozbagci, Lefschetz fibrations on compact Stein surfaces, \gtref5200110319334
  • S K Donaldson, Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999) 205–236
  • Y M Eliashberg, A few remarks about symplectic filling, Geom. Topol. 8 (2004) 277–293
  • Y M Eliashberg, M Gromov, Convex symplectic manifolds, from: “Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989)”, Proc. Sympos. Pure Math. 52, Amer. Math. Soc. Providence, RI (1991) 135–162
  • Y M Eliashberg, W P Thurston, Confoliations, University Lecture Series 13, American Mathematical Society (1998)
  • J B Etnyre, On symplectic fillings, \agtref4200457380
  • J B Etnyre, K Honda, On symplectic cobordisms, Math. Ann. 323 (2002) 31–39
  • D Gabai, Foliations and the topology of $3$-manifolds, J. Differential Geom. 18 (1983) 445–503
  • D Gabai, Foliations and the topology of $3$-manifolds III, J. Differential Geom. 26 (1987) 479–536
  • D T Gay, Explicit concave fillings of contact three-manifolds, Math. Proc. Cambridge Philos. Soc. 133 (2002) 431–441
  • E Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: “Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)”, Higher Ed. Press, Beijing (2002) 405–414
  • R E Gompf, A I Stipsicz, $4$-manifolds and Kirby calculus, volume 20 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI (1999)
  • C McA Gordon, Some aspects of classical knot theory, from: “Knot theory (Proc. Sem. Plans-sur-Bex, 1977)”, Lecture Notes in Math. 685, Springer-Verlag (1978) 1–60
  • C McA Gordon, J Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371–415
  • L H Kauffman, On knots, Annals of Mathematics Studies 115, Princeton University Press (1987)
  • P B Kronheimer, T S Mrowka, Floer homology for Seiberg–Witten Monopoles, in preparation
  • P B Kronheimer, T S Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997) 209–255
  • P B Kronheimer, T S Mrowka, Scalar curvature and the Thurston norm, Math. Res. Lett. 4 (1997) 931–937
  • P B Kronheimer, T S Mrowka, P S Ozsváth, Z Szabó, Monopoles and lens space surgeries.
  • P Lisca, Symplectic fillings and positive scalar curvature, Geom. Topol. 2 (1998) 103–116
  • P Lisca, A Stipsicz, Seifert fibered contact three–manifolds via surgery.
  • P Lisca, G Matić, Tight contact structures and Seiberg–Witten invariants, Invent. Math. 129 (1997) 500–525
  • J Milnor, A unique decomposition theorem for $3$-manifolds, Amer. J. Math. 84 (1962) 1–7
  • A Némethi, On the Ozsváth–Szabó invariant of negative definite plumbed $3$-manifolds.
  • H Ohta, K Ono, Simple singularities and topology of symplectically filling $4$-manifold, Commen. Math. Helv. 74 (1999) 575–590
  • P S Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications., to appear in Annals of Math.
  • P S Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds., to appear in Annals of Math.
  • P S Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds.
  • P S Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries.
  • P S Ozsváth, Z Szabó, Heegaard Floer homologies and contact structures.
  • P S Ozsváth, Z Szabó, Holomorphic disks and knot invariants, (2002) \arxivmath.GT/0209056
  • P S Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Advances in Mathematics 173 (2003) 179–261
  • P S Ozsváth, Z Szabó, Heegaard Floer homology and alternating knots, \gtref720036225254
  • P S Ozsváth, Z Szabó, Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004) 1–34
  • J Rasmussen, Floer homology and knot complements, Ph.D. thesis, Harvard University (2003)
  • C H Taubes, The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994) 809–822
  • C H Taubes, More constraints on symplectic forms from Seiberg–Witten invariants, Math. Res. Lett. 2 (1995) 9–13
  • C H Taubes, Seiberg Witten and Gromov invariants for symplectic $4$-manifolds, volume 2 of First International Press Lecture Series, International Press, Somerville, MA (2000), edited by Richard Wentworth
  • W P Thurston, A norm for the homology of $3$-manifolds, Mem. Amer. Math. Soc. 59 (1986) i–vi and 99–130
  • V Turaev, Torsion invariants of ${\rm Spin}\sp c$-structures on $3$-manifolds, Math. Res. Lett. 4 (1997) 679–695
  • E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769–796