Geometry & Topology
- Geom. Topol.
- Volume 7, Number 2 (2003), 965-999.
A non-abelian Seiberg–Witten invariant for integral homology 3–spheres
Abstract
A new diffeomorphism invariant of integral homology 3–spheres is defined using a non-abelian “quaternionic” version of the Seiberg–Witten equations.
Article information
Source
Geom. Topol., Volume 7, Number 2 (2003), 965-999.
Dates
Received: 9 January 2003
Revised: 10 December 2003
Accepted: 19 December 2003
First available in Project Euclid: 21 December 2017
Permanent link to this document
https://projecteuclid.org/euclid.gt/1513883327
Digital Object Identifier
doi:10.2140/gt.2003.7.965
Mathematical Reviews number (MathSciNet)
MR2026552
Zentralblatt MATH identifier
1065.57031
Subjects
Primary: 57R57: Applications of global analysis to structures on manifolds, Donaldson and Seiberg-Witten invariants [See also 58-XX]
Secondary: 57M27: Invariants of knots and 3-manifolds
Keywords
Seiberg–Witten 3–manifolds
Citation
Lim, Yuhan. A non-abelian Seiberg–Witten invariant for integral homology 3–spheres. Geom. Topol. 7 (2003), no. 2, 965--999. doi:10.2140/gt.2003.7.965. https://projecteuclid.org/euclid.gt/1513883327