Geometry & Topology

Hyperbolic cone-manifolds with large cone-angles

Juan Souto

Full-text: Open access


We prove that every closed oriented 3–manifold admits a hyperbolic cone–manifold structure with cone–angle arbitrarily close to 2π.

Article information

Geom. Topol., Volume 7, Number 2 (2003), 789-797.

Received: 3 June 2003
Accepted: 13 November 2003
First available in Project Euclid: 21 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 57M50: Geometric structures on low-dimensional manifolds
Secondary: 30F40: Kleinian groups [See also 20H10] 57M60: Group actions in low dimensions

hyperbolic cone–manifold Kleinian groups


Souto, Juan. Hyperbolic cone-manifolds with large cone-angles. Geom. Topol. 7 (2003), no. 2, 789--797. doi:10.2140/gt.2003.7.789.

Export citation


  • M Boileau, J Porti, Geometrization of 3-orbifolds of cyclic type, Astérisque No. 272 (2001)
  • F Bonahon, J–P Otal, Laminations mesurées de plissage des variétés hyperboliques de dimension 3, preprint (2001)\nl\char'176fbonahon/Research/Preprints/Preprints.html
  • K Bromberg, Rigidity of geometrically finite hyperbolic cone–manifolds, preprint (2002) arXiv:math.GT/0009149
  • D Canary, D Epstein, P Green Notes on notes ofThurston in Analytical and geometric aspects of hyperbolic space, London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press, Cambridge (1987) 3–92
  • C Hodgson, S Kerckhoff, Rigidity of hyperbolic cone–manifolds and hyperbolic Dehn surgery, J. Diff. Geom. 48 (1998) 1–59
  • K Matsuzaki, M Taniguchi, Hyperbolic Manifolds and Kleinian Groups, Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, (1998)
  • S Kerckhoff, The measure of the limit set of the handlebody group, Topology 29 (1990) 27–40
  • S Kojima, Deformations of hyperbolic3–cone–manifolds, J. Diff. Geom. 49 (1998) 469–516
  • H. Masur, Measured foliations and handlebodies, Ergodic Theory Dyn. Syst. 6, (1986) 99–116
  • J–P Otal, Courants géodésiques et produits libres, Thèse d'Etat, Université Paris–Sud, Orsay (1988)
  • J–P Otal, Thurston's hyperbolization of Haken manifolds, Surveys in differential geometry, Vol. III (1998) 77–194
  • J Souto, Geometric structures on 3–manifolds and their deformations, Ph.D.–thesis Universität Bonn. Bonner Mathematischen Schriften nr. 342 (2001)
  • W P Thurston, The Geometry and Topology of $3$–manifolds, Lecture notes (1979)