Geometry & Topology
- Geom. Topol.
- Volume 4, Number 1 (2000), 431-449.
Bounds on exceptional Dehn filling
Abstract
We show that for a hyperbolic knot complement, all but at most 12 Dehn fillings are irreducible with infinite word-hyperbolic fundamental group.
Article information
Source
Geom. Topol., Volume 4, Number 1 (2000), 431-449.
Dates
Received: 20 February 1999
Revised: 29 May 2000
Accepted: 11 November 2000
First available in Project Euclid: 21 December 2017
Permanent link to this document
https://projecteuclid.org/euclid.gt/1513883292
Digital Object Identifier
doi:10.2140/gt.2000.4.431
Mathematical Reviews number (MathSciNet)
MR1799796
Zentralblatt MATH identifier
0959.57009
Subjects
Primary: 57M50: Geometric structures on low-dimensional manifolds 57M27: Invariants of knots and 3-manifolds
Secondary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45} 57S25: Groups acting on specific manifolds
Keywords
hyperbolic Dehn filling word-hyperbolic
Citation
Agol, Ian. Bounds on exceptional Dehn filling. Geom. Topol. 4 (2000), no. 1, 431--449. doi:10.2140/gt.2000.4.431. https://projecteuclid.org/euclid.gt/1513883292