Geometry & Topology

On the classification of tight contact structures I

Ko Honda

Full-text: Open access


We develop new techniques in the theory of convex surfaces to prove complete classification results for tight contact structures on lens spaces, solid tori, and T2×I.

Article information

Geom. Topol., Volume 4, Number 1 (2000), 309-368.

Received: 6 October 2000
Accepted: 14 October 2000
First available in Project Euclid: 21 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 57M50: Geometric structures on low-dimensional manifolds
Secondary: 53C15: General geometric structures on manifolds (almost complex, almost product structures, etc.)

tight contact structure lens spaces solid tori


Honda, Ko. On the classification of tight contact structures I. Geom. Topol. 4 (2000), no. 1, 309--368. doi:10.2140/gt.2000.4.309.

Export citation


  • D Bennequin, Entrelacements et équations de Pfaff, Astérisque, 107–108 (1983) 87–161
  • Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623–637
  • Y Eliashberg, Topological characterization of Stein manifolds of dimension $>$ 2, Intern. Journal of Math. 1 (1990) 29–46
  • Y Eliashberg, Filling by holomorphic discs and its applications, London Math. Soc. Lecture Note Series, 151 (1991) 45–67
  • Y Eliashberg, Contact 3–manifolds, twenty years since J Martinet's work, Ann. Inst. Fourier 42 (1992) 165–192
  • J Etnyre, Tight contact structures on lens spaces, to appear in Communications in Contemp. Math.
  • J Etnyre, Transversal torus knots, Geom. Topol. 3 (1999) 253–268
  • J Etnyre, K Honda, On the non-existence of tight contact structures, preprint (1999) available at honda and arXiv:math.GT/9910115
  • Y Eliashberg, W Thurston, Confoliations, University Lecture Series, 13, Amer. Math. Soc. Providence (1998)
  • M Fraser, Classifying Legendrian knots in tight contact 3–manifolds, PhD thesis (1994)
  • E Giroux, Une structure de contact, même tendue, est plus ou moins tordue, Ann. Scient. Ec. Norm. Sup. 27 (1994) 697–705
  • E Giroux, Convexité en topologie de contact, Comm. Math. Helv. 66 (1991) 637–677
  • E Giroux, Structures de contact en dimension trois and bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000) 615–689
  • R Gompf, Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998) 619–693
  • M Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307–347
  • A Hatcher, Notes on basic 3–manifold topology, preliminary notes
  • K Honda, On the classification of tight contact strutures II, to appear in Jour. Diff. Geom., available at honda
  • K Honda, Gluing tight contact structures, preprint (2000) available at honda
  • Y Kanda, The classification of tight contact structures on the 3–torus, Comm. in Anal. and Geom. 5 (1997) 413–438
  • Y Kanda, On the Thurston–Bennequin invariant of Legendrian knots and non exactness of Bennequin's inequality, Invent. Math. 133 (1998) 227–242
  • P Lisca, G Matić, Tight contact structures and Seiberg–Witten invariants, Invent. Math. 129 (1997) 509–525
  • S Makar-Limanov, Tight contact structures on solid tori, Trans. Amer. Math. Soc. 350 (1998) 1045–1078