Geometry & Topology

On the classification of tight contact structures I

Ko Honda

Full-text: Open access

Abstract

We develop new techniques in the theory of convex surfaces to prove complete classification results for tight contact structures on lens spaces, solid tori, and T2×I.

Article information

Source
Geom. Topol., Volume 4, Number 1 (2000), 309-368.

Dates
Received: 6 October 2000
Accepted: 14 October 2000
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513883288

Digital Object Identifier
doi:10.2140/gt.2000.4.309

Mathematical Reviews number (MathSciNet)
MR1786111

Zentralblatt MATH identifier
0980.57010

Subjects
Primary: 57M50: Geometric structures on low-dimensional manifolds
Secondary: 53C15: General geometric structures on manifolds (almost complex, almost product structures, etc.)

Keywords
tight contact structure lens spaces solid tori

Citation

Honda, Ko. On the classification of tight contact structures I. Geom. Topol. 4 (2000), no. 1, 309--368. doi:10.2140/gt.2000.4.309. https://projecteuclid.org/euclid.gt/1513883288


Export citation

References

  • D Bennequin, Entrelacements et équations de Pfaff, Astérisque, 107–108 (1983) 87–161
  • Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623–637
  • Y Eliashberg, Topological characterization of Stein manifolds of dimension $>$ 2, Intern. Journal of Math. 1 (1990) 29–46
  • Y Eliashberg, Filling by holomorphic discs and its applications, London Math. Soc. Lecture Note Series, 151 (1991) 45–67
  • Y Eliashberg, Contact 3–manifolds, twenty years since J Martinet's work, Ann. Inst. Fourier 42 (1992) 165–192
  • J Etnyre, Tight contact structures on lens spaces, to appear in Communications in Contemp. Math.
  • J Etnyre, Transversal torus knots, Geom. Topol. 3 (1999) 253–268
  • J Etnyre, K Honda, On the non-existence of tight contact structures, preprint (1999) available at http://www.math.uga.edu/~ honda and arXiv:math.GT/9910115
  • Y Eliashberg, W Thurston, Confoliations, University Lecture Series, 13, Amer. Math. Soc. Providence (1998)
  • M Fraser, Classifying Legendrian knots in tight contact 3–manifolds, PhD thesis (1994)
  • E Giroux, Une structure de contact, même tendue, est plus ou moins tordue, Ann. Scient. Ec. Norm. Sup. 27 (1994) 697–705
  • E Giroux, Convexité en topologie de contact, Comm. Math. Helv. 66 (1991) 637–677
  • E Giroux, Structures de contact en dimension trois and bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000) 615–689
  • R Gompf, Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998) 619–693
  • M Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307–347
  • A Hatcher, Notes on basic 3–manifold topology, preliminary notes
  • K Honda, On the classification of tight contact strutures II, to appear in Jour. Diff. Geom., available at http://www.math.uga.edu/~ honda
  • K Honda, Gluing tight contact structures, preprint (2000) available at http://www.math.uga.edu/~ honda
  • Y Kanda, The classification of tight contact structures on the 3–torus, Comm. in Anal. and Geom. 5 (1997) 413–438
  • Y Kanda, On the Thurston–Bennequin invariant of Legendrian knots and non exactness of Bennequin's inequality, Invent. Math. 133 (1998) 227–242
  • P Lisca, G Matić, Tight contact structures and Seiberg–Witten invariants, Invent. Math. 129 (1997) 509–525
  • S Makar-Limanov, Tight contact structures on solid tori, Trans. Amer. Math. Soc. 350 (1998) 1045–1078