Geometry & Topology

Examples of Riemannian manifolds with positive curvature almost everywhere

Peter Petersen and Frederick Wilhelm

Full-text: Open access

Abstract

We show that the unit tangent bundle of S4 and a real cohomology P3 admit Riemannian metrics with positive sectional curvature almost everywhere. These are the only examples so far with positive curvature almost everywhere that are not also known to admit positive curvature.

Article information

Source
Geom. Topol., Volume 3, Number 1 (1999), 331-367.

Dates
Received: 27 March 1999
Revised: 30 July 1999
Accepted: 6 October 1999
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513883150

Digital Object Identifier
doi:10.2140/gt.1999.3.331

Mathematical Reviews number (MathSciNet)
MR1714915

Zentralblatt MATH identifier
0963.53020

Subjects
Primary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20]
Secondary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20] 58B20: Riemannian, Finsler and other geometric structures [See also 53C20, 53C60] 58G30

Keywords
positive curvature unit tangent bundle of $S^4$

Citation

Petersen, Peter; Wilhelm, Frederick. Examples of Riemannian manifolds with positive curvature almost everywhere. Geom. Topol. 3 (1999), no. 1, 331--367. doi:10.2140/gt.1999.3.331. https://projecteuclid.org/euclid.gt/1513883150


Export citation

References

  • T Aubin, Metriques riemanniennes et courbure, J. Diff. Geom. 4 (1970) 383–424
  • S Allof, N Wallach, An infinite family of distinct $7$–manifolds admitting positively curved Riemannian structures, Bull. AMS, 81 (1975) 93–97
  • M Berger, Les variétés riemanniennes homogènes normales simplemente connexes à courbure strictement positive, Ann. del Scoula Norm. Sup. Pisa, 15 (1961) 179–246
  • M Berger, On the diameter of some Riemannian manifolds, preprint, Berkeley (1962)
  • M Berger, Trois remarques sur les variétés riemanniennes à courbure positive, Comp. Rend. Acad. Sc. Math. Paris, 263 (1966) 76–78
  • L Bérad Bergery, Les variétés riemanniennes homogènes simplement connexes de dimension impaire à courbure strictment positive, J. Math. pures et appl. 55 (1976) 47–68
  • J P Bourguignon, A Deschamps, P Sentenac, Quelques variations particulieres d'un produit de metriques, Ann. Sci. Ecole Norm. Supper. 6 (1973) 1–16
  • J Cheeger, Some examples of manifolds of nonnegative curvature J. Diff. Geom. 8 (1972) 623–628
  • J-H Eschenburg, New examples of manifolds with strictly positive curvature, Invent. Math. 66 (1982) 469–480
  • J-H Eschenburg, Inhomogeneous spaces of positive curvature, Diff. Geom. and its Applications, 2 (1992) 123–132
  • J-H Eschenburg, Freie isometrische Aktionen auf kompakten Liegruppen mit positiv gekrümmten Orbiträumen, Schriftenreihe Math. Inst. Univ. Münster, Ser. 2, vol. 32, Univ. Münster, Münster (1984)
  • D Gromoll, W Meyer, An exotic sphere with nonnegative sectional curvature, Ann. of Math. 100 (1974) 401–406
  • K Grove, W Ziller, Curvature and symmetry of Milnor Spheres, preprint
  • A Hatcher, A proof of the Smale Conjecture, Diff$(S^3) \simeq O(4)$, Ann. of Math. 117 (1983) 553–607
  • D Husemoller, Fibre Bundles, Springer–Verlag (1994)
  • S Mandell, Doctoral Thesis, S.U.N.Y. Stony Brook, in preparation
  • J Nash, Positive Ricci curvature on fibre bundles, J. Diff. Geom. 14 (1979) 241–254
  • B O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966) 459–469
  • A L Oniscik, Transitive compact transformation groups, Amer. Math. Soc. Translations, 55 (1966), 459–469
  • A Rigas, Some bundles of non-negative curvature, Math. Ann. 232 (1978) 187–193
  • N Steenrod, Topology of Fiber Bundles, Princeton Mathematical Series, Princeton University Press (1951)
  • M Strake, Curvature Increasing Metric Variations, Math. Ann. 276 (1987) 633–641
  • N Wallach, Compact homogeneous riemannian manifolds with strictly positive curvature, Ann. of Math. 96 (1972) 277–295
  • F Wilhelm, Exotic spheres with lots of positive curvatures, J. Geom. Anal., to appear
  • F Wilhelm, An exotic sphere with positive sectional curvature almost everywhere, preprint