Geometry & Topology

On combinatorial link Floer homology

Ciprian Manolescu, Peter Ozsváth, Zoltán Szabó, and Dylan P Thurston

Full-text: Open access

Abstract

Link Floer homology is an invariant for links defined using a suitable version of Lagrangian Floer homology. In an earlier paper, this invariant was given a combinatorial description with mod 2 coefficients. In the present paper, we give a self-contained presentation of the basic properties of link Floer homology, including an elementary proof of its invariance. We also fix signs for the differentials, so that the theory is defined with integer coefficients.

Article information

Source
Geom. Topol., Volume 11, Number 4 (2007), 2339-2412.

Dates
Received: 2 November 2006
Accepted: 12 June 2007
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513799984

Digital Object Identifier
doi:10.2140/gt.2007.11.2339

Mathematical Reviews number (MathSciNet)
MR2372850

Zentralblatt MATH identifier
1155.57030

Subjects
Primary: 57R58: Floer homology 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}

Keywords
Floer homology

Citation

Manolescu, Ciprian; Ozsváth, Peter; Szabó, Zoltán; Thurston, Dylan P. On combinatorial link Floer homology. Geom. Topol. 11 (2007), no. 4, 2339--2412. doi:10.2140/gt.2007.11.2339. https://projecteuclid.org/euclid.gt/1513799984


Export citation

References

  • J A Baldwin, W D Gillam, Computations of Heegaard-Floer knot homology
  • P R Cromwell, Embedding knots and links in an open book. I. Basic properties, Topology Appl. 64 (1995) 37–58
  • I A Dynnikov, Arc-presentations of links: monotonic simplification, Fund. Math. 190 (2006) 29–76
  • A Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988) 513–547
  • R H Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. $(2)$ 57 (1953) 547–560
  • C Manolescu, P S Ozsváth, S Sarkar, A combinatorial description of knot Floer homology
  • J McCleary, User's guide to spectral sequences, Mathematics Lecture Series 12, Publish or Perish, Wilmington, DE (1985)
  • L P Neuwirth, $\ast$ projections of knots, from: “Algebraic and differential topology–-global differential geometry”, Teubner-Texte Math. 70, Teubner, Leipzig (1984) 198–205
  • P Ozsváth, Z Szabó, Holomorphic disks and link invariants
  • P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615–639
  • P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58–116
  • P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027–1158
  • P Ozsváth, D P Thurston, Z Szabó, Transverse knots and combinatorial knot Floer homology, in preparation
  • J A Rasmussen, Khovanov homology and the slice genus
  • J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)
  • S Sarkar, J Wang, A combinatorial description of some Heegaard Floer homologies
  • P H Schoute, Analytic treatment of the polytopes regularly derived from the regular polytopes, Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam 11 (1911) 1–87