Geometry & Topology

Rigidity and exotic models for the $K$–local stable homotopy category

Constanze Roitzheim

Full-text: Open access

Abstract

Can the model structure of a stable model category be recovered from the triangulated structure of its homotopy category? This paper introduces a new positive example for this, namely the K–local stable homotopy at the prime 2. For odd primes, however, this is not true: we discuss a counterexample given by Jens Franke and show how such exotic models for the K–local stable homotopy category at odd primes can be detected.

Article information

Source
Geom. Topol., Volume 11, Number 4 (2007), 1855-1886.

Dates
Received: 5 April 2007
Revised: 23 August 2007
Accepted: 2 August 2007
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513799976

Digital Object Identifier
doi:10.2140/gt.2007.11.1855

Mathematical Reviews number (MathSciNet)
MR2350470

Zentralblatt MATH identifier
1142.55007

Subjects
Primary: 55P42: Stable homotopy theory, spectra
Secondary: 55P60: Localization and completion

Keywords
stable homotopy theory model categories Bousfield localisation

Citation

Roitzheim, Constanze. Rigidity and exotic models for the $K$–local stable homotopy category. Geom. Topol. 11 (2007), no. 4, 1855--1886. doi:10.2140/gt.2007.11.1855. https://projecteuclid.org/euclid.gt/1513799976


Export citation

References

  • A K Bousfield, The localization of spaces with respect to homology, Topology 14 (1975) 133–150
  • A K Bousfield, The localization of spectra with respect to homology, Topology 18 (1979) 257–281
  • A K Bousfield, On the homotopy theory of $K$–local spectra at an odd prime, Amer. J. Math. 107 (1985) 895–932
  • A K Bousfield, E M Friedlander, Homotopy theory of $\Gamma$–spaces, spectra, and bisimplicial sets, from: “Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II”, Lecture Notes in Math. 658, Springer, Berlin (1978) 80–130
  • F Clarke, M Crossley, S Whitehouse, The discrete module category for the ring of $K$–theory operations, Topology 46 (2007) 139–154
  • D Dugger, Replacing model categories with simplicial ones, Trans. Amer. Math. Soc. 353 (2001) 5003–5027
  • J Franke, Uniqueness theorems for certain triangulated categories possessing an adams spectral sequence, preprint (1996) Available at \setbox0\makeatletter\@url http://www.math.uiuc.edu/K-theory/0139/ {\unhbox0
  • P G Goerss, J F Jardine, Simplicial homotopy theory, Progress in Mathematics 174, Birkhäuser Verlag, Basel (1999)
  • P S Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs 99, American Mathematical Society, Providence, RI (2003)
  • M J Hopkins, J H Smith, Nilpotence and stable homotopy theory II, Ann. of Math. $(2)$ 148 (1998) 1–49
  • M Hovey, Model categories, Mathematical Surveys and Monographs 63, American Mathematical Society, Providence, RI (1999)
  • B Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. $(4)$ 27 (1994) 63–102
  • D G Quillen, Homotopical algebra, Lecture Notes in Mathematics 43, Springer, Berlin (1967)
  • D C Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984) 351–414
  • D C Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics 121, Academic Press, Orlando, FL (1986)
  • C Roitzheim, On the algebraic classification of $K$–local spectra
  • S Schwede, The stable homotopy category is rigid, preprint (2005) Available at \setbox0\makeatletter\@url http://www.math.uni-bonn.de/people/schwede/rigid.pdf {\unhbox0
  • S Schwede, B Shipley, A uniqueness theorem for stable homotopy theory, Math. Z. 239 (2002) 803–828
  • H Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies 49, Princeton University Press, Princeton, N.J. (1962)