Geometry & Topology

The Extended Bloch Group and the Cheeger–Chern–Simons Class

Sebastian Goette and Christian Zickert

Full-text: Open access

Abstract

We present a formula for the full Cheeger–Chern–Simons class of the tautological flat complex vector bundle of rank 2 over BSL(2,δ). This improves the formula by Dupont and Zickert [Geom. Topol. 10 (2006) 1347–1372], where the class is only computed modulo 2–torsion.

Article information

Source
Geom. Topol., Volume 11, Number 3 (2007), 1623-1635.

Dates
Received: 5 June 2007
Revised: 11 July 2007
Accepted: 4 July 2007
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513799904

Digital Object Identifier
doi:10.2140/gt.2007.11.1623

Mathematical Reviews number (MathSciNet)
MR2350461

Zentralblatt MATH identifier
1201.57019

Subjects
Primary: 57R20: Characteristic classes and numbers 11G55: Polylogarithms and relations with $K$-theory

Keywords
Extended Bloch group Cheeger-Chern-Simons class Rogers dilogarithm

Citation

Goette, Sebastian; Zickert, Christian. The Extended Bloch Group and the Cheeger–Chern–Simons Class. Geom. Topol. 11 (2007), no. 3, 1623--1635. doi:10.2140/gt.2007.11.1623. https://projecteuclid.org/euclid.gt/1513799904


Export citation

References

  • J Cheeger, J Simons, Differential characters and geometric invariants, from: “Geometry and topology (College Park, MD, 1983/84)”, Lecture Notes in Mathematics 1167, Springer, Berlin (1985) 50–80
  • S S Chern, J Simons, Characteristic forms and geometric invariants, Ann. of Math. $(2)$ 99 (1974) 48–69
  • J L Dupont, The dilogarithm as a characteristic class for flat bundles, J. Pure Appl. Algebra 44 (1-3) (1987) 137–164
  • J L Dupont, Scissors congruences, group homology and characteristic classes, Nankai Tracts in Mathematics 1, World Scientific Publishing Co., River Edge, NJ (2001)
  • J L Dupont, C H Sah, Scissors congruences II, J. Pure Appl. Algebra 25 (1982) 159–195
  • J L Dupont, C K Zickert, A dilogarithmic formula for the Cheeger–Chern–Simons class, Geom. Topol. 10 (2006) 1347–1372
  • A B Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math. 114 (1995) 197–318
  • W D Neumann, Extended Bloch group and the Cheeger–Chern–Simons class, Geom. Topol. 8 (2004) 413–474