Geometry & Topology

On canonical triangulations of once-punctured torus bundles and two-bridge link complements

François Guéritaud

Full-text: Open access

Abstract

We prove the hyperbolization theorem for punctured torus bundles and two-bridge link complements by decomposing them into ideal tetrahedra which are then given hyperbolic structures, following Rivin’s volume maximization principle.

Article information

Source
Geom. Topol., Volume 10, Number 3 (2006), 1239-1284.

Dates
Received: 10 November 2005
Revised: 29 July 2006
Accepted: 23 July 2006
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513799763

Digital Object Identifier
doi:10.2140/gt.2006.10.1239

Mathematical Reviews number (MathSciNet)
MR2255497

Zentralblatt MATH identifier
1130.57024

Subjects
Primary: 57M50: Geometric structures on low-dimensional manifolds
Secondary: 57M27: Invariants of knots and 3-manifolds

Keywords
hyperbolic geometry hyperbolic volume ideal triangulations surface bundles two-bridge links angle structures

Citation

Guéritaud, François. On canonical triangulations of once-punctured torus bundles and two-bridge link complements. Geom. Topol. 10 (2006), no. 3, 1239--1284. doi:10.2140/gt.2006.10.1239. https://projecteuclid.org/euclid.gt/1513799763


Export citation

References

  • C C Adams, Thrice-punctured spheres in hyperbolic $3$-manifolds, Trans. Amer. Math. Soc. 287 (1985) 645–656
  • I Agol, Small 3-manifolds of large genus, Geom. Dedicata 102 (2003) 53–64
  • I Agol, P Storm, W Thurston, Lower bounds on volumes of hyperbolic Haken 3-manifolds
  • H Akiyoshi, On the Ford domains of once-punctured torus groups, Sūrikaisekikenkyūsho Kōkyūroku (1999) 109–121
  • H Akiyoshi, M Sakuma, M Wada, Y Yamashita, Ford domains of punctured torus groups and two–bridge knot groups, from: “Knot Theory: dedicated to 70th birthday of Prof. Kunio Murasugi”, (M Sakuma, editor) (2000)
  • H Akiyoshi, M Sakuma, M Wada, Y Yamashita, Jørgensen's picture of punctured torus groups and its refinement, from: “Kleinian groups and hyperbolic 3-manifolds (Warwick, 2001)”, London Math. Soc. Lecture Note Ser. 299, Cambridge Univ. Press, Cambridge (2003) 247–273
  • P Alestalo, H Helling, On torus fibrations over the circle, Sonderforschungsbereich SFB-343 (1997)
  • J F Brock, Weil-Petersson translation distance and volumes of mapping tori, Comm. Anal. Geom. 11 (2003) 987–999
  • K Chan, Constructing hyperbolic 3–manifolds, Undergraduate thesis with C Hodgson, University of Melbourne (2002)
  • Y Colin de Verdière, Un principe variationnel pour les empilements de cercles, Invent. Math. 104 (1991) 655–669
  • F Guéritaud, Triangulated cores of punctured–torus groups
  • H Helling, The trace fields of a series of hyperbolic manifolds, Sonderforschungsbereich SFB-343 (1999)
  • T Koch, Fordsche Fundamentalbereiche hyperbolischer einfach-punktierter Torus-Bündel, Sonderforschungsbereich SFB-343 (1999)
  • M Lackenby, The canonical decomposition of once-punctured torus bundles, Comment. Math. Helv. 78 (2003) 363–384
  • M Lackenby, The volume of hyperbolic alternating link complements, With an appendix by Ian Agol and Dylan Thurston, Proc. London Math. Soc. $(3)$ 88 (2004) 204–224
  • W Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984) 37–44
  • W Menasco, M Thistlethwaite, The classification of alternating links, Ann. of Math. $(2)$ 138 (1993) 113–171
  • J Milnor, Hyperbolic geometry: the first 150 years, Bull. Amer. Math. Soc. $($N.S.$)$ 6 (1982) 9–24
  • Y N Minsky, The classification of punctured-torus groups, Ann. of Math. $(2)$ 149 (1999) 559–626
  • K Murasugi, Knot theory and its applications, Birkhäuser, Boston (1996)
  • W D Neumann, D Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307–332
  • J-P Otal, Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3, Astérisque (1996) x+159
  • I Rivin, }, Ann. of Math. $(2)$ 139 (1994) 553–580
  • M Sakuma, J Weeks, Examples of canonical decompositions of hyperbolic link complements, Japan. J. Math. $($N.S.$)$ 21 (1995) 393–439
  • M B Thistlethwaite, On the algebraic part of an alternating link, Pacific J. Math. 151 (1991) 317–333