Geometry & Topology

$K$– and $L$–theory of the semi-direct product of the discrete 3–dimensional Heisenberg group by $\mathbb{Z}/4$

Wolfgang Lueck

Full-text: Open access


We compute the group homology, the topological K–theory of the reduced C–algebra, the algebraic K–theory and the algebraic L–theory of the group ring of the semi-direct product of the three-dimensional discrete Heisenberg group by 4. These computations will follow from the more general treatment of a certain class of groups G which occur as extensions 1KGQ1 of a torsionfree group K by a group Q which satisfies certain assumptions. The key ingredients are the Baum–Connes and Farrell–Jones Conjectures and methods from equivariant algebraic topology.

Article information

Geom. Topol., Volume 9, Number 3 (2005), 1639-1676.

Received: 8 December 2004
Accepted: 19 August 2005
First available in Project Euclid: 20 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Primary: 19K99: None of the above, but in this section
Secondary: 19A31: $K_0$ of group rings and orders 19B28: $K_1$of group rings and orders [See also 57Q10] 19D50: Computations of higher $K$-theory of rings [See also 13D15, 16E20] 19G24: $L$-theory of group rings [See also 11E81] 55N99: None of the above, but in this section

$K$– and $L$–groups of group rings and group $C^*$–algebras three-dimensional Heisenberg group


Lueck, Wolfgang. $K$– and $L$–theory of the semi-direct product of the discrete 3–dimensional Heisenberg group by $\mathbb{Z}/4$. Geom. Topol. 9 (2005), no. 3, 1639--1676. doi:10.2140/gt.2005.9.1639.

Export citation


  • A Bak, The computation of surgery groups of finite groups with abelian $2$-hyperelementary subgroups, from: “Algebraic $K$–theory (Evanston 1976)”, Springer Lecture Notes in Math. 551, Berlin (1976) 384–409
  • M Banagl, A A Ranicki, Generalized Arf invariants in algebraic ${L}$–theory.
  • A Bartels, W Lück, Isomorphism Conjecture for homotopy $K$–theory and groups acting on trees (2004), preprintreihe SFB 478 –- Geometrische Strukturen in der Mathematik, Heft 342, Münster.
  • A C Bartels, On the domain of the assembly map in algebraic $K$-theory, \agtref320033510371050
  • H Bass, Algebraic $K$-theory, W A Benjamin, Inc. New York-Amsterdam (1968)
  • P Baum, A Connes, N Higson, Classifying space for proper actions and $K$-theory of group $C\sp \ast$-algebras, from: “$C\sp \ast$–algebras: 1943–1993 (San Antonio, TX, 1993)”, Contemp. Math. 167, Amer. Math. Soc. Providence, RI (1994) 240–291
  • J Brookman, J F Davis, Q Khan, Manifolds homotopy equivalent to $\bbR\bbP^n \# \bbR\bbP^n$.
  • S E Cappell, Unitary nilpotent groups and Hermitian $K$-theory. I, Bull. Amer. Math. Soc. 80 (1974) 1117–1122
  • F X Connolly, J F Davis, The surgery obstruction groups of the infinite dihedral group, \gtref820042910431078
  • F X Connolly, A Ranicki, On the calculation of UNIL$_*$, Adv. Math. 195 (2005) 205–258
  • J F Davis, W Lück, Spaces over a category and assembly maps in isomorphism conjectures in $K$- and $L$-theory, $K$–Theory 15 (1998) 201–252
  • J F Davis, W Lück, The $p$-chain spectral sequence, $K$–Theory 30 (2003) 71–104
  • S Echterhoff, W Lück, C Phillips, in preparation (2005)
  • F T Farrell, L E Jones, Isomorphism conjectures in algebraic $K$-theory, J. Amer. Math. Soc. 6 (1993) 249–297
  • F T Farrell, L E Jones, The lower algebraic $K$-theory of virtually infinite cyclic groups, $K$–Theory 9 (1995) 13–30
  • F T Farrell, L E Jones, W Lück, A caveat on the isomorphism conjecture in $L$-theory, Forum Math. 14 (2002) 413–418
  • I Hambleton, E K Pedersen, Identifying assembly maps in $K$- and $L$-theory, Math. Ann. 328 (2004) 27–57
  • N Higson, G Kasparov, $E$-theory and $KK$-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001) 23–74
  • P H Kropholler, G Mislin, Groups acting on finite-dimensional spaces with finite stabilizers, Comment. Math. Helv. 73 (1998) 122–136
  • W Lück, Survey on classifying spaces for families of subgroups (2004), preprintreihe SFB 478 –- Geometrische Strukturen in der Mathematik, Heft 308, Münster.
  • W Lück, The type of the classifying space for a family of subgroups, J. Pure Appl. Algebra 149 (2000) 177–203
  • W Lück, The relation between the Baum-Connes conjecture and the trace conjecture, Invent. Math. 149 (2002) 123–152
  • W Lück, H Reich, The Baum-Connes and the Farrell-Jones Conjectures in K- and L-Theory (2003), preprintreihe SFB 478 –- Geometrische Strukturen in der Mathematik, Heft 324, Münster, to appear in the handbook of $K$–theory, Springer.
  • W Lück, R Stamm, Computations of $K$- and $L$-theory of cocompact planar groups, $K$–Theory 21 (2000) 249–292
  • R C Lyndon, P E Schupp, Combinatorial group theory, Ergebnisse series 89, Springer-Verlag, Berlin (1977)
  • G Mislin, Equivariant $K$-homology of the classifying space for proper actions, from: “Proper group actions and the Baum-Connes conjecture”, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel (2003) 1–78
  • A A Ranicki, Algebraic $L$-theory. II. Laurent extensions, Proc. London Math. Soc. (3) 27 (1973) 126–158
  • A A Ranicki, Algebraic $L$-theory. III. Twisted Laurent extensions, from: “Algebraic K-theory, III: Hermitian K-theory and geometric application (Proc. Conf. Seattle Res. Center, Battelle Memorial Inst. 1972)”, Springer Lecture Notes in Mathematics 343, Berlin (1973) 412–463
  • A A Ranicki, On the Novikov conjecture, from: “Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993)”, London Math. Soc. Lecture Note Ser. 226, Cambridge Univ. Press, Cambridge (1995) 272–337
  • P Scott, The geometries of $3$-manifolds, Bull. London Math. Soc. 15 (1983) 401–487
  • J-P Serre, Trees, Springer-Verlag, Berlin (1980)
  • T tom Dieck, Transformation groups, de Gruyter Studies in Mathematics 8, Walter de Gruyter & Co. Berlin (1987)
  • A Valette, Introduction to the Baum-Connes conjecture, from notes taken by Indira Chatterji, With an appendix by Guido Mislin, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (2002)
  • F Waldhausen, Algebraic $K$-theory of topological spaces. I, from: “Algebraic and geometric topology (Stanford, 1976), Part 1”, Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. Providence, R.I. (1978) 35–60