Geometry & Topology

Gromov–Witten invariants of $\mathbb{P}^1$ and Eynard–Orantin invariants

Paul Norbury and Nick Scott

Full-text: Open access


We prove that genus-zero and genus-one stationary Gromov–Witten invariants of 1 arise as the Eynard–Orantin invariants of the spectral curve x=z+1z, y= lnz. As an application we show that tautological intersection numbers on the moduli space of curves arise in the asymptotics of large-degree Gromov–Witten invariants of 1.

Article information

Geom. Topol., Volume 18, Number 4 (2014), 1865-1910.

Received: 18 July 2011
Revised: 6 December 2013
Accepted: 27 February 2014
First available in Project Euclid: 20 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 05A15: Exact enumeration problems, generating functions [See also 33Cxx, 33Dxx]
Secondary: 14N35: Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants [See also 53D45]

Gromov–Witten moduli space Eynard–Orantin


Norbury, Paul; Scott, Nick. Gromov–Witten invariants of $\mathbb{P}^1$ and Eynard–Orantin invariants. Geom. Topol. 18 (2014), no. 4, 1865--1910. doi:10.2140/gt.2014.18.1865.

Export citation


  • G Borot, B Eynard, M Mulase, B Safnuk, A matrix model for simple Hurwitz numbers, and topological recursion, J. Geom. Phys. 61 (2011) 522–540
  • V Bouchard, A Klemm, M Mariño, S Pasquetti, Remodeling the B–model, Comm. Math. Phys. 287 (2009) 117–178
  • V Bouchard, M Mariño, Hurwitz numbers, matrix models and enumerative geometry, from: “From Hodge theory to integrability and TQFT tt*–geometry”, (R Y Donagi, K Wendland, editors), Proc. Sympos. Pure Math. 78, Amer. Math. Soc. (2008) 263–283
  • R Dijkgraaf, H Fuji, M Manabe, The volume conjecture, perturbative knot invariants, and recursion relations for topological strings, Nuclear Phys. B 849 (2011) 166–211
  • B Eynard, All order asymptotic expansion of large partitions, J. Stat. Mech. Theory Exp. (2008) P07023, 34
  • B Eynard, Recursion between Mumford volumes of moduli spaces, Ann. Henri Poincaré 12 (2011) 1431–1447
  • B Eynard, M Mulase, B Safnuk, The Laplace transform of the cut-and-join equation and the Bouchard–Mariño conjecture on Hurwitz numbers, Publ. Res. Inst. Math. Sci. 47 (2011) 629–670
  • B Eynard, N Orantin, Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007) 347–452
  • B Eynard, N Orantin, Topological recursion in enumerative geometry and random matrices, J. Phys. A 42 (2009) 293001, 117
  • J D Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics 352, Springer, New York (1973)
  • E Getzler, Topological recursion relations in genus $2$, from: “Integrable systems and algebraic geometry”, (M-H Saito, Y Shimizu, K Ueno, editors), World Sci. Publ. (1998) 73–106
  • E Getzler, The Toda conjecture, from: “Symplectic geometry and mirror symmetry”, (K Fukaya, Y-G Oh, K Ono, G Tian, editors), World Sci. Publ. (2001) 51–79
  • M Mariño, Open string amplitudes and large order behavior in topological string theory, J. High Energy Phys. (2008) 060, 34
  • P Norbury, String and dilaton equations for counting lattice points in the moduli space of curves, Trans. Amer. Math. Soc. 365 (2013) 1687–1709
  • P Norbury, N Scott, Polynomials representing Eynard–Orantin invariants, Q. J. Math. 64 (2013) 515–546
  • A Okounkov, R Pandharipande, Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006) 517–560
  • A Okounkov, R Pandharipande, Virasoro constraints for target curves, Invent. Math. 163 (2006) 47–108
  • A Okounkov, R Pandharipande, Gromov–Witten theory, Hurwitz numbers, and matrix models, from: “Algebraic geometry, Part 1”, (D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus, editors), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 325–414
  • A N Tjurin, Periods of quadratic differentials, Uspekhi Mat. Nauk 33 (1978) 149–195, 272 In Russian; translated in Russian Math. Surveys 33 (1978) 169–221
  • H J H Tuenter, Walking into an absolute sum, Fibonacci Quart. 40 (2002) 175–180
  • E Witten, Two-dimensional gravity and intersection theory on moduli space, from: “Proceedings of the conference on geometry and topology held at Harvard University, April 27–29, 1990”, (S T Yau, H B Lawson, editors), Surveys in differential geometry 1, Int. Press, Somerville, MA (1991) 243–310