Geometry & Topology

On the equivalence of Legendrian and transverse invariants in knot Floer homology

John A Baldwin, David Vela-Vick, and Vera Vértesi

Full-text: Open access

Abstract

Using the grid diagram formulation of knot Floer homology, Ozsváth, Szabó and Thurston defined an invariant of transverse knots in the tight contact 3–sphere. Shortly afterwards, Lisca, Ozsváth, Stipsicz and Szabó defined an invariant of transverse knots in arbitrary contact 3–manifolds using open book decompositions. It has been conjectured that these invariants agree where they are both defined. We prove this fact by defining yet another invariant of transverse knots, showing that this third invariant agrees with the two mentioned above.

Article information

Source
Geom. Topol., Volume 17, Number 2 (2013), 925-974.

Dates
Received: 27 December 2011
Revised: 18 December 2012
Accepted: 2 January 2013
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732570

Digital Object Identifier
doi:10.2140/gt.2013.17.925

Mathematical Reviews number (MathSciNet)
MR3070518

Zentralblatt MATH identifier
1285.57005

Subjects
Primary: 57M27: Invariants of knots and 3-manifolds
Secondary: 57R58: Floer homology

Keywords
Legendrian knots transverse knots Heegaard Floer homology

Citation

Baldwin, John A; Vela-Vick, David; Vértesi, Vera. On the equivalence of Legendrian and transverse invariants in knot Floer homology. Geom. Topol. 17 (2013), no. 2, 925--974. doi:10.2140/gt.2013.17.925. https://projecteuclid.org/euclid.gt/1513732570


Export citation

References

  • M M Asaeda, J H Przytycki, A S Sikora, Categorification of the Kauffman bracket skein module of $I$-bundles over surfaces, Algebr. Geom. Topol. 4 (2004) 1177–1210
  • K L Baker, J B Etnyre, J Van Horn-Morris, Cabling, contact structures and mapping class monoids, J. Differential Geom. 90 (2012) 1–80
  • J A Baldwin, Comultiplication in link Floer homology and transversely nonsimple links, Algebr. Geom. Topol. 10 (2010) 1417–1436
  • J A Baldwin, J E Grigsby, Categorified invariants and the braid group
  • J A Baldwin, A S Levine, A combinatorial spanning tree model for knot Floer homology, Adv. Math. 231 (2012) 1886–1939
  • D Bennequin, Entrelacements et équations de Pfaff, from: “Third Schnepfenried geometry conference, Vol. 1”, Astérisque 107, Soc. Math. France, Paris (1983) 87–161
  • Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441–483
  • Y Eliashberg, Contact $3$-manifolds twenty years since J. Martinet's work, Ann. Inst. Fourier $($Grenoble$)$ 42 (1992) 165–192
  • Y Eliashberg, M Fraser, Classification of topologically trivial Legendrian knots, from: “Geometry, topology, and dynamics”, (F Lalonde, editor), CRM Proc. Lecture Notes 15, Amer. Math. Soc., Providence, RI (1998) 17–51
  • Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560–673
  • J Epstein, D Fuchs, M Meyer, Chekanov–Eliashberg invariants and transverse approximations of Legendrian knots, Pacific J. Math. 201 (2001) 89–106
  • J B Etnyre, Legendrian and transversal knots, from: “Handbook of knot theory”, (W Menasco, M Thistlethwaite, editors), Elsevier B. V., Amsterdam (2005) 105–185
  • J B Etnyre, Lectures on open book decompositions and contact structures, from: “Floer homology, gauge theory, and low-dimensional topology”, (D A Ellwood, P S Ozsváth, A I Stipsicz, Z Szabó, editors), Clay Math. Proc. 5, Amer. Math. Soc. (2006) 103–141
  • J B Etnyre, K Honda, Knots and contact geometry, I: torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001) 63–120
  • J B Etnyre, K Honda, On connected sums and Legendrian knots, Adv. Math. 179 (2003) 59–74
  • E Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: “Proceedings of the International Congress of Mathematicians, Vol. II”, (T Li, editor), Higher Ed. Press, Beijing (2002) 405–414
  • K Honda, W H Kazez, G Matić, Right-veering diffeomorphisms of compact surfaces with boundary, Invent. Math. 169 (2007) 427–449
  • K Honda, W H Kazez, G Matić, On the contact class in Heegaard Floer homology, J. Differential Geom. 83 (2009) 289–311
  • T Khandhawit, L Ng, A family of transversely nonsimple knots, Algebr. Geom. Topol. 10 (2010) 293–314
  • R Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006) 955–1097
  • P Lisca, P Ozsváth, A I Stipsicz, Z Szabó, Heegaard Floer invariants of Legendrian knots in contact three-manifolds, J. Eur. Math. Soc. $($JEMS$)$ 11 (2009) 1307–1363
  • C Manolescu, P Ozsváth, Heegaard Floer homology and integer surgeries on links
  • C Manolescu, P Ozsváth, S Sarkar, A combinatorial description of knot Floer homology, Ann. of Math. 169 (2009) 633–660
  • C Manolescu, P Ozsváth, Z Szabó, D Thurston, On combinatorial link Floer homology, Geom. Topol. 11 (2007) 2339–2412
  • L L Ng, Computable Legendrian invariants, Topology 42 (2003) 55–82
  • L Ng, P Ozsváth, D Thurston, Transverse knots distinguished by knot Floer homology, J. Symplectic Geom. 6 (2008) 461–490
  • L Ng, D Thurston, Grid diagrams, braids, and contact geometry, from: “Proceedings of Gökova Geometry-Topology Conference 2008”, (S Akbulut, T Önder, R J Stern, editors), Gökova Geometry/Topology Conference (GGT), Gökova, Turkey (2009) 120–136
  • S Y Orevkov, V V Shevchishin, Markov theorem for transversal links, J. Knot Theory Ramifications 12 (2003) 905–913
  • P Ozsváth, A I Stipsicz, Contact surgeries and the transverse invariant in knot Floer homology, J. Inst. Math. Jussieu 9 (2010) 601–632
  • P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58–116
  • P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39–61
  • P Ozsváth, Z Szabó, Holomorphic disks, link invariants and the multi-variable Alexander polynomial, Algebr. Geom. Topol. 8 (2008) 615–692
  • P Ozsváth, Z Szabó, D Thurston, Legendrian knots, transverse knots and combinatorial Floer homology, Geom. Topol. 12 (2008) 941–980
  • E Pavelescu, Braiding knots in contact 3-manifolds, Pacific J. Math. 253 (2011) 475–487
  • O Plamenevskaya, Transverse knots and Khovanov homology, Math. Res. Lett. 13 (2006) 571–586
  • J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)
  • L P Roberts, On knot Floer homology in double branched covers, Geom. Topol. 17 (2013) 413–467
  • B Sahamie, Dehn twists in Heegaard Floer homology, Algebr. Geom. Topol. 10 (2010) 465–524
  • W P Thurston, H E Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975) 345–347
  • D S Vela-Vick, On the transverse invariant for bindings of open books, J. Differential Geom. 88 (2011) 533–552
  • V Vértesi, Transversely nonsimple knots, Algebr. Geom. Topol. 8 (2008) 1481–1498
  • N C Wrinkle, The Markov theorem for transverse knots, PhD thesis, Columbia University (2002)