Geometry & Topology

Free planar actions of the Klein bottle group

Frédéric Le Roux

Full-text: Open access

Abstract

We describe the structure of the free actions of the fundamental group of the Klein bottle a,baba1=b1 by orientation preserving homeomorphisms of the plane. The main result is that a must act properly discontinuously, while b cannot act properly discontinuously. As a corollary, we describe some torsion free groups that may not act freely on the plane. We also find some properties which are reminiscent of Brouwer theory for the group , in particular that every free action is virtually wandering.

Article information

Source
Geom. Topol., Volume 15, Number 3 (2011), 1545-1567.

Dates
Received: 25 January 2011
Revised: 25 January 2011
Accepted: 29 June 2011
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732339

Digital Object Identifier
doi:10.2140/gt.2011.15.1545

Mathematical Reviews number (MathSciNet)
MR2851071

Zentralblatt MATH identifier
1268.37066

Subjects
Primary: 37E30: Homeomorphisms and diffeomorphisms of planes and surfaces 57S25: Groups acting on specific manifolds

Keywords
plane homeomorphism free group action

Citation

Le Roux, Frédéric. Free planar actions of the Klein bottle group. Geom. Topol. 15 (2011), no. 3, 1545--1567. doi:10.2140/gt.2011.15.1545. https://projecteuclid.org/euclid.gt/1513732339


Export citation

References

  • G Baumslag, D Solitar, Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. 68 (1962) 199–201
  • G D Birkhoff, Surface transformations and their dynamical applications, Acta Math. 43 (1922) 1–119
  • D Calegari, Circular groups, planar groups, and the Euler class, from: “Proceedings of the Casson Fest”, (C Gordon, Y Rieck, editors), Geom. Topol. Monogr. 7, Coventry (2004) 431–491
  • A Constantin, B Kolev, The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere, Enseign. Math. $(2)$ 40 (1994) 193–204
  • B Deroin, A Navas, Probabilistic and dynamical aspects of (left) orderable groups, in preparation
  • É Ghys, Groups acting on the circle, Monogr. del Inst. de Mat. y Ciencias Afines 6, Inst. de Mat. y Ciencias Afine, Lima (1999) A paper from the 12th Escuela Latinoamericana de Matemáticas (XII-ELAM) held in Lima, June 28–July 3, 1999
  • L Guillou, Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré-Birkhoff, Topology 33 (1994) 331–351
  • T Homma, H Terasaka, On the structure of the plane translation of Brouwer, Osaka Math. J. 5 (1953) 233–266
  • B von Kerékjártó, Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Ann. 80 (1919) 36–38
  • H Kneser, Die Deformationssätze der einfach zusammenhängenden Flächen, Math. Z. 25 (1926) 362–372
  • P Le Calvez, From Brouwer theory to the study of homeomorphisms of surfaces, from: “International Congress of Mathematicians. Vol. III”, (M Sanz-Sol'e, J Soria, J L Varona, J Verdera, editors), Eur. Math. Soc. (2006) 77–98
  • F Le Roux, Bounded recurrent sets for planar homeomorphisms, Ergodic Theory Dynam. Systems 19 (1999) 1085–1091
  • F Le Roux, Homéomorphismes de surfaces: théorèmes de la fleur de Leau–Fatou et de la variété stable, Astérisque 292, Soc. Math. France (2004)
  • F Le Roux, Structure des homéomorphismes de Brouwer, Geom. Topol. 9 (2005) 1689–1774
  • F Le Roux, Un indice qui affine l'indice de Poincaré–Lefschetz pour les homeomorphismes de surfaces, Ann. of Math. $(2)$ 171 (2010) 1531–1589
  • J N Mather, Topological proofs of some purely topological consequences of Carathéodory's theory of prime ends, from: “Selected studies: physics-astrophysics, mathematics, history of science”, (T M Rassias, G M Rassias, editors), North-Holland, Amsterdam (1982) 225–255
  • W P Thurston, Three-dimensional geometry and topology. Vol. 1, (S Levy, editor), Princeton Math. Series 35, Princeton Univ. Press (1997)