Geometry & Topology

Cosmetic surgery in L–space homology spheres

Zhongtao Wu

Full-text: Open access

Abstract

Let K be a nontrivial knot in S3, and let r and r be two distinct rational numbers of same sign. We prove that there is no orientation-preserving homeomorphism between the manifolds Sr3(K) and Sr3(K). We further generalize this uniqueness result to knots in arbitrary L–space homology spheres.

Article information

Source
Geom. Topol., Volume 15, Number 2 (2011), 1157-1168.

Dates
Received: 4 October 2010
Revised: 11 April 2011
Accepted: 3 May 2011
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732314

Digital Object Identifier
doi:10.2140/gt.2011.15.1157

Mathematical Reviews number (MathSciNet)
MR2831258

Zentralblatt MATH identifier
1226.57016

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45} 57M27: Invariants of knots and 3-manifolds

Keywords
Dehn surgery cosmetic surgery Heegaard Floer homology

Citation

Wu, Zhongtao. Cosmetic surgery in L–space homology spheres. Geom. Topol. 15 (2011), no. 2, 1157--1168. doi:10.2140/gt.2011.15.1157. https://projecteuclid.org/euclid.gt/1513732314


Export citation

References

  • S Boyer, D Lines, Surgery formulae for Casson's invariant and extensions to homology lens spaces, J. Reine Angew. Math. 405 (1990) 181–220
  • A J Casson, C M Gordon, On slice knots in dimension three, from: “Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., 1976), Part 2”, (R J Milgram, editor), Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. (1978) 39–53
  • C M Gordon, J Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371–415
  • R Kirby, editor, Problems in low-dimensional topology, from: “Geometric topology (Athens, GA, 1993)”, AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35–473
  • P Kronheimer, T Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space surgeries, Ann. of Math. $(2)$ 165 (2007) 457–546
  • M Lackenby, Dehn surgery on knots in $3$–manifolds, J. Amer. Math. Soc. 10 (1997) 835–864
  • Y Ni, Non-separating spheres and twisted Heegaard Floer homology
  • Y Ni, Link Floer homology detects the Thurston norm, Geom. Topol. 13 (2009) 2991–3019
  • P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615–639
  • P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58–116
  • P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. $(2)$ 159 (2004) 1159–1245
  • P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027–1158
  • P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281–1300
  • P Ozsváth, Z Szabó, Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008) 101–153
  • P Ozsváth, Z Szabó, Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011) 1–68
  • J Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)
  • K Walker, An extension of Casson's invariant, Annals of Math. Studies 126, Princeton Univ. Press (1992)
  • J Wang, Cosmetic surgeries on genus one knots, Algebr. Geom. Topol. 6 (2006) 1491–1517