Geometry & Topology

On macroscopic dimension of rationally essential manifolds

Alexander Dranishnikov

Full-text: Open access

Abstract

We construct a counterexamples in dimensions n>3 to Gromov’s conjecture that the macroscopic dimension of rationally essential n–dimensional manifolds equals n.

Article information

Source
Geom. Topol., Volume 15, Number 2 (2011), 1107-1124.

Dates
Received: 29 April 2010
Revised: 11 April 2011
Accepted: 8 May 2011
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732312

Digital Object Identifier
doi:10.2140/gt.2011.15.1107

Mathematical Reviews number (MathSciNet)
MR2821571

Zentralblatt MATH identifier
1220.53057

Subjects
Primary: 53C23: Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
Secondary: 20J06: Cohomology of groups 55N91: Equivariant homology and cohomology [See also 19L47] 55M10: Dimension theory [See also 54F45] 57N65: Algebraic topology of manifolds

Keywords
macroscopic dimension essential manifold

Citation

Dranishnikov, Alexander. On macroscopic dimension of rationally essential manifolds. Geom. Topol. 15 (2011), no. 2, 1107--1124. doi:10.2140/gt.2011.15.1107. https://projecteuclid.org/euclid.gt/1513732312


Export citation

References

  • G Bell, A Dranishnikov, On asymptotic dimension of groups acting on trees, Geom. Dedicata 103 (2004) 89–101
  • J Block, S Weinberger, Aperiodic tilings, positive scalar curvature and amenability of spaces, J. Amer. Math. Soc. 5 (1992) 907–918
  • D Bolotov, A Dranishnikov, On Gromov's scalar curvature conjecture, Proc. Amer. Math. Soc. 138 (2010) 1517–1524
  • K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer, New York (1994) Corrected reprint of the 1982 original
  • M Brunnbauer, B Hanke, Large and small group homology, J. Topol. 3 (2010) 463–486
  • A Dranishnikov, Macroscopic dimension and essential manifolds, from: “Proceedings of the Conference dedicated to the 75th anniversary of the Steklov Mathematical Institute, Moscow, 2009”, Proc. Steklov Inst. Math.
  • A N Dranishnikov, Y B Rudyak, On the Berstein–Svarc theorem in dimension 2, Math. Proc. Cambridge Philos. Soc. 146 (2009) 407–413
  • S M Gersten, Cohomological lower bounds for isoperimetric functions on groups, Topology 37 (1998) 1031–1072
  • M Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983) 1–147
  • M Gromov, Asymptotic invariants of infinite groups, from: “Geometric group theory, Vol. 2 (Sussex, 1991)”, London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press, Cambridge (1993) 1–295
  • M Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signatures, from: “Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993)”, Progr. Math. 132, Birkhäuser, Boston (1996) 1–213
  • A S Švarc, The genus of a fibered space, Trudy Moskov. Mat. Obšč. 10 (1961) 217–272