Geometry & Topology

Embedded contact homology and Seiberg–Witten Floer cohomology V

Clifford Henry Taubes

Full-text: Open access

Abstract

This is a sequel to four earlier papers by the author that construct an isomorphism between the embedded contact homology and Seiberg–Witten Floer cohomology of a compact 3–manifold with a given contact 1–form. These respective homology/cohomology theories carry additional structure; this sequel proves that the isomorphism that is constructed in the first four papers is compatible with this extra structure.

Article information

Source
Geom. Topol., Volume 14, Number 5 (2010), 2961-3000.

Dates
Received: 15 November 2008
Revised: 11 October 2010
Accepted: 20 October 2010
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732252

Digital Object Identifier
doi:10.2140/gt.2010.14.2961

Mathematical Reviews number (MathSciNet)
MR2746727

Zentralblatt MATH identifier
1276.57027

Subjects
Primary: 57R17: Symplectic and contact topology
Secondary: 57R57: Applications of global analysis to structures on manifolds, Donaldson and Seiberg-Witten invariants [See also 58-XX]

Keywords
Seiberg–Witten equations Floer homology contact homology

Citation

Taubes, Clifford Henry. Embedded contact homology and Seiberg–Witten Floer cohomology V. Geom. Topol. 14 (2010), no. 5, 2961--3000. doi:10.2140/gt.2010.14.2961. https://projecteuclid.org/euclid.gt/1513732252


Export citation

References

  • M Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. $($JEMS$)$ 4 (2002) 313–361
  • M Hutchings, The embedded contact homology index revisited, from: “New perspectives and challenges in symplectic field theory”, (M Abreu, F Lalonde, L Polterovich, editors), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 263–297
  • M Hutchings, M Sullivan, Rounding corners of polygons and the embedded contact homology of $T\sp 3$, Geom. Topol. 10 (2006) 169–266
  • M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders. I, J. Symplectic Geom. 5 (2007) 43–137
  • M Hutchings, C H Taubes, The Weinstein conjecture for stable Hamiltonian structures, Geom. Topol. 13 (2009) 901–941
  • P B Kronheimer, T S Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997) 209–255
  • P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Math. Monographs 10, Cambridge Univ. Press (2007)
  • C B Morrey, Jr, Multiple integrals in the calculus of variations, Grund. der math. Wissenschaften 130, Springer, New York (1966)
  • C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture. II. More closed integral curves of the Reeb vector field, Geom. Topol. 13 (2009) 1337–1417
  • \bibmarginparThe pages will be added when these are published. C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology I, Geom. Topol. 14 (2010)
  • C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology II, Geom. Topol. 14 (2010)
  • C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology III, Geom. Topol. 14 (2010)
  • C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology IV, Geom. Topol. 14 (2010)