Geometry & Topology

Embedded contact homology and Seiberg–Witten Floer cohomology IV

Clifford Henry Taubes

Full-text: Open access

Abstract

This is the fourth of five papers that construct an isomorphism between the embedded contact homology and Seiberg–Witten Floer cohomology of a compact 3–manifold with a given contact 1–form.

Article information

Source
Geom. Topol., Volume 14, Number 5 (2010), 2819-2960.

Dates
Received: 15 November 2008
Revised: 11 May 2010
Accepted: 1 June 2010
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732251

Digital Object Identifier
doi:10.2140/gt.2010.14.2819

Mathematical Reviews number (MathSciNet)
MR2746726

Zentralblatt MATH identifier
1276.57026

Subjects
Primary: 57R17: Symplectic and contact topology
Secondary: 57R57: Applications of global analysis to structures on manifolds, Donaldson and Seiberg-Witten invariants [See also 58-XX]

Keywords
Seiberg–Witten equations Floer homology contact homology

Citation

Taubes, Clifford Henry. Embedded contact homology and Seiberg–Witten Floer cohomology IV. Geom. Topol. 14 (2010), no. 5, 2819--2960. doi:10.2140/gt.2010.14.2819. https://projecteuclid.org/euclid.gt/1513732251


Export citation

References

  • F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799–888
  • M Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. $($JEMS$)$ 4 (2002) 313–361
  • M Hutchings, The embedded contact homology index revisited, from: “New perspectives and challenges in symplectic field theory”, (M Abreu, F Lalonde, L Polterovich, editors), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 263–297
  • M Hutchings, M Sullivan, Rounding corners of polygons and the embedded contact homology of $T\sp 3$, Geom. Topol. 10 (2006) 169–266
  • P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Math. Monogr. 10, Cambridge Univ. Press (2007)
  • C H Taubes, Seiberg–Witten and Gromov invariants for symplectic $4$–manifolds, (R Wentworth, editor), First Int. Press Lecture Ser. 2, International Press, Somerville, MA (2000)
  • C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117–2202
  • C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology I, Geom. Topol. 14 (2010)
  • C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology II, Geom. Topol. 14 (2010)
  • C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology III, Geom. Topol. 14 (2010)