Geometry & Topology

Embedded contact homology and Seiberg–Witten Floer cohomology III

Clifford Henry Taubes

Full-text: Open access

Abstract

This is the third of five papers that construct an isomorphism between the embedded contact homology and Seiberg–Witten Floer cohomology of a compact 3–manifold with a given contact 1–form.

Article information

Source
Geom. Topol., Volume 14, Number 5 (2010), 2721-2817.

Dates
Received: 15 November 2008
Revised: 11 May 2010
Accepted: 1 June 2010
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732250

Digital Object Identifier
doi:10.2140/gt.2010.14.2721

Mathematical Reviews number (MathSciNet)
MR2746725

Zentralblatt MATH identifier
1276.57025

Subjects
Primary: 57R17: Symplectic and contact topology
Secondary: 57R57: Applications of global analysis to structures on manifolds, Donaldson and Seiberg-Witten invariants [See also 58-XX]

Keywords
Seiberg–Witten equations Floer homology contact homology

Citation

Taubes, Clifford Henry. Embedded contact homology and Seiberg–Witten Floer cohomology III. Geom. Topol. 14 (2010), no. 5, 2721--2817. doi:10.2140/gt.2010.14.2721. https://projecteuclid.org/euclid.gt/1513732250


Export citation

References

  • J-M Bismut, D S Freed, The analysis of elliptic families. I. Metrics and connections on determinant bundles, Comm. Math. Phys. 106 (1986) 159–176
  • F Bourgeois, K Mohnke, Coherent orientations in symplectic field theory, Math. Z. 248 (2004) 123–146
  • S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Math. Monogr., Oxford Science Publ., The Clarendon Press, Oxford Univ. Press, New York (1990)
  • R Gompf, private communication
  • H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337–379
  • M Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. $($JEMS$)$ 4 (2002) 313–361
  • M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders. I, J. Symplectic Geom. 5 (2007) 43–137
  • M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders. II, J. Symplectic Geom. 7 (2009) 29–133
  • P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Math. Monogr. 10, Cambridge Univ. Press (2007)
  • T Mrowka, A local Mayer–Vietoris principle for Yang–Mills moduli spaces, PhD thesis, University of California, Berkeley (1989)
  • D Quillen, Determinants of Cauchy–Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985) 37–41, 96
  • C H Taubes, Asymptotic spectral flow for Dirac operators, Comm. Anal. Geom. 15 (2007) 569–587
  • \bibmarginparThe pages will be added when these are published. C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology I, Geom. Topol. 14 (2010)
  • \bibmarginparThe pages will be added when these are published. C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology II, Geom. Topol. 14 (2010)
  • C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology IV, Geom. Topol. 14 (2010)