Geometry & Topology

Embedded contact homology and Seiberg–Witten Floer cohomology II

Clifford Henry Taubes

Full-text: Open access

Abstract

This is the second of five papers that construct an isomorphism between the embedded contact homology and Seiberg–Witten Floer cohomology of a compact 3–manifold with a given contact 1–form.

Article information

Source
Geom. Topol., Volume 14, Number 5 (2010), 2583-2720.

Dates
Received: 15 November 2008
Revised: 11 May 2010
Accepted: 1 June 2010
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732249

Digital Object Identifier
doi:10.2140/gt.2010.14.2583

Mathematical Reviews number (MathSciNet)
MR2746724

Zentralblatt MATH identifier
1276.57024

Subjects
Primary: 57R17: Symplectic and contact topology
Secondary: 57R57: Applications of global analysis to structures on manifolds, Donaldson and Seiberg-Witten invariants [See also 58-XX]

Keywords
Seiberg–Witten equations Floer homology contact homology

Citation

Taubes, Clifford Henry. Embedded contact homology and Seiberg–Witten Floer cohomology II. Geom. Topol. 14 (2010), no. 5, 2583--2720. doi:10.2140/gt.2010.14.2583. https://projecteuclid.org/euclid.gt/1513732249


Export citation

References

  • A Jaffe, C Taubes, Vortices and monopoles. Structure of static gauge theories, Progress in Physics 2, Birkhäuser, Boston (1980)
  • P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Math. Monogr. 10, Cambridge Univ. Press (2007)
  • C B Morrey, Jr, Multiple integrals in the calculus of variations, Grund. der math. Wissenschaften 130, Springer, New York (1966)
  • C H Taubes, Arbitrary $N$–vortex solutions to the first order Ginzburg–Landau equations, Comm. Math. Phys. 72 (1980) 277–292
  • C H Taubes, Seiberg–Witten and Gromov invariants for symplectic $4$–manifolds, (R Wentworth, editor), First Int. Press Lecture Ser. 2, Int. Press, Somerville, MA (2000)
  • C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117–2202
  • C H Taubes, The Seiberg-Witten equations and the Weinstein conjecture. II. More closed integral curves of the Reeb vector field, Geom. Topol. 13 (2009) 1337–1417
  • \bibmarginparThe pages will be added when these are published. C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology I, Geom. Topol. 14 (2010)
  • C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology III, Geom. Topol. 14 (2010)
  • C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology IV, Geom. Topol. 14 (2010)