Geometry & Topology

A finitely generated, locally indicable group with no faithful action by $C^1$ diffeomorphisms of the interval

Andrés Navas

Full-text: Open access

Abstract

According to Thurston’s stability theorem, every group of C1 diffeomorphisms of the closed interval is locally indicable (that is, every finitely generated subgroup factors through ). We show that, even for finitely generated groups, the converse of this statement is not true. More precisely, we show that the group F22, although locally indicable, does not embed into Diff+1((0,1)). (Here F2 is any free subgroup of SL(2,), and its action on 2 is the linear one.) Moreover, we show that for every non-solvable subgroup G of SL(2,), the group G2 does not embed into Diff+1(S1).

Article information

Source
Geom. Topol., Volume 14, Number 1 (2010), 573-584.

Dates
Received: 25 February 2009
Revised: 22 October 2009
Accepted: 19 October 2009
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1513732182

Digital Object Identifier
doi:10.2140/gt.2010.14.573

Mathematical Reviews number (MathSciNet)
MR2602845

Zentralblatt MATH identifier
1197.37022

Subjects
Primary: 20B27: Infinite automorphism groups [See also 12F10] 37C85: Dynamics of group actions other than Z and R, and foliations [See mainly 22Fxx, and also 57R30, 57Sxx] 37E05: Maps of the interval (piecewise continuous, continuous, smooth)

Keywords
Thurston's stability locally indicable group

Citation

Navas, Andrés. A finitely generated, locally indicable group with no faithful action by $C^1$ diffeomorphisms of the interval. Geom. Topol. 14 (2010), no. 1, 573--584. doi:10.2140/gt.2010.14.573. https://projecteuclid.org/euclid.gt/1513732182


Export citation

References

  • U Bader, A Furman, T Gelander, N Monod, Property (T) and rigidity for actions on Banach spaces, Acta Math. 198 (2007) 57–105
  • A F Beardon, The geometry of discrete groups, Graduate Texts in Mathematics 91, Springer, New York (1983)
  • E Breuillard, T Gelander, J Souto, P Storm, Dense embeddings of surface groups, Geom. Topol. 10 (2006) 1373–1389
  • D Calegari, Dynamical forcing of circular groups, Trans. Amer. Math. Soc. 358 (2006) 3473–3491
  • D Calegari, Foliations and the geometry of 3–manifolds, Oxford Mathematical Monographs, Oxford University Press, Oxford (2007)
  • D Calegari, Nonsmoothable, locally indicable group actions on the interval, Algebr. Geom. Topol. 8 (2008) 609–613
  • J Cantwell, L Conlon, An interesting class of $C^1$ foliations, Topology Appl. 126 (2002) 281–297
  • S D Cohen, A M W Glass, Free groups from fields, J. London Math. Soc. $(2)$ 55 (1997) 309–319
  • P Dehornoy, I Dynnikov, D Rolfsen, B Wiest, Ordering braids, Mathematical Surveys and Monographs 148, American Mathematical Society, Providence, RI (2008)
  • B Deroin, V Kleptsyn, A Navas, Sur la dynamique unidimensionnelle en régularité intermédiaire, Acta Math. 199 (2007) 199–262
  • B Farb, J Franks, Groups of homeomorphisms of one-manifolds III: Nilpotent subgroups, Ergodic Theory Dynam. Systems 23 (2003) 1467–1484
  • É Ghys, Groups acting on the circle, Enseign. Math. $(2)$ 47 (2001) 329–407
  • S Hurder, Entropy and dynamics of $C^1$–foliations, preprint (2000)
  • G Margulis, Free subgroups of the homeomorphism group of the circle, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 669–674
  • D W Morris, Amenable groups that act on the line, Algebr. Geom. Topol. 6 (2006) 2509–2518
  • M Müller, Sur l'approximation et l'instabilité des feuilletages, unpublished text (1982)
  • A Navas, Quelques nouveaux phénomènes de rang 1 pour les groupes de difféomorphismes du cercle, Comment. Math. Helv. 80 (2005) 355–375
  • A Navas, Grupos de difeomorfismos del cí rculo, Ensaios Matemáticos 13, Sociedade Brasileira de Matemática, Rio de Janeiro (2007)
  • A Navas, Growth of groups and diffeomorphisms of the interval, Geom. Funct. Anal. 18 (2008) 988–1028
  • A Navas, On the dynamics of left-orderable groups, Ann. Inst. Fourier $($Grenoble$)$ (to appear)
  • K Parwani, $C^1$ actions of the mapping class groups on the circle, Algebr. Geom. Topol. 8 (2008) 935–944
  • W P Thurston, A generalization of the Reeb stability theorem, Topology 13 (1974) 347–352
  • T Tsuboi, $\Gamma_{1}$–structures avec une seule feuille, Astérisque (1984) 222–234 Transversal structure of foliations (Toulouse, 1982)