Geometry & Topology

Combinatorial tangle Floer homology

Ina Petkova and Vera Vértesi

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/gt.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We extend the idea of bordered Floer homology to knots and links in S3: Using a specific Heegaard diagram, we construct gluable combinatorial invariants of tangles in S3, D3, and I × S2. The special case of S3 gives back a stabilized version of knot Floer homology.

Article information

Source
Geom. Topol., Volume 20, Number 6 (2016), 3219-3332.

Dates
Received: 20 November 2014
Revised: 19 October 2015
Accepted: 19 November 2015
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1510859084

Digital Object Identifier
doi:10.2140/gt.2016.20.3219

Mathematical Reviews number (MathSciNet)
MR3590353

Zentralblatt MATH identifier
1366.57005

Subjects
Primary: 57M27: Invariants of knots and 3-manifolds 57R58: Floer homology

Keywords
tangles knot Floer homology bordered Floer homology TQFT

Citation

Petkova, Ina; Vértesi, Vera. Combinatorial tangle Floer homology. Geom. Topol. 20 (2016), no. 6, 3219--3332. doi:10.2140/gt.2016.20.3219. https://projecteuclid.org/euclid.gt/1510859084


Export citation

References

  • F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799–888
  • P Ghiggini, Knot Floer homology detects genus-one fibred knots, Amer. J. Math. 130 (2008) 1151–1169
  • M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359–426
  • M Khovanov, A functor-valued invariant of tangles, Algebr. Geom. Topol. 2 (2002) 665–741
  • R Lipshitz, C Manolescu, J Wang, Combinatorial cobordism maps in hat Heegaard Floer theory, Duke Math. J. 145 (2008) 207–247
  • R Lipshitz, P Ozsváth, D Thurston, Heegaard Floer homology as morphism spaces, II, in preparation
  • R Lipshitz, P Ozsváth, D Thurston, Slicing planar grid diagrams: a gentle introduction to bordered Heegaard Floer homology, from “Proceedings of Gökova geometry/topology conference 2008” (S Akbulut, T Önder, R J Stern, editors), GGT, Gökova, Turkey (2009) 91–119
  • R Lipshitz, P Ozsváth, D Thurston, Bordered Heegaard Floer homology: invariance and pairing, preprint (2011)
  • R Lipshitz, P S Ozsváth, D P Thurston, Bimodules in bordered Heegaard Floer homology, Geom. Topol. 19 (2015) 525–724
  • C Manolescu, An unoriented skein exact triangle for knot Floer homology, Math. Res. Lett. 14 (2007) 839–852
  • C Manolescu, P Ozsváth, S Sarkar, A combinatorial description of knot Floer homology, Ann. of Math. 169 (2009) 633–660
  • C Manolescu, P Ozsváth, Z Szabó, D Thurston, On combinatorial link Floer homology, Geom. Topol. 11 (2007) 2339–2412
  • Y Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007) 577–608
  • P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615–639
  • P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311–334
  • P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58–116
  • P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159–1245
  • P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027–1158
  • P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326–400
  • P Ozsváth, Z Szabó, On the skein exact squence for knot Floer homology, preprint (2007)
  • P Ozsváth, Z Szabó, Holomorphic disks, link invariants and the multi-variable Alexander polynomial, Algebr. Geom. Topol. 8 (2008) 615–692
  • I Petkova, An absolute $\mathbb{Z}/2$ grading on bordered Heegaard Floer homology, preprint (2014)
  • J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003) Available at \setbox0\makeatletter\@url http://search.proquest.com/docview/305332635 {\unhbox0
  • J Rasmussen, Knot polynomials and knot homologies, from “Geometry and topology of manifolds” (H U Boden, I Hambleton, A J Nicas, B D Park, editors), Fields Inst. Commun. 47, Amer. Math. Soc., Providence, RI (2005) 261–280
  • S Sarkar, J Wang, An algorithm for computing some Heegaard Floer homologies, Ann. of Math. 171 (2010) 1213–1236
  • A Sartori, The Alexander polynomial as quantum invariant of links, Ark. Mat. 53 (2015) 177–202
  • O Y Viro, Quantum relatives of the Alexander polynomial, Algebra i Analiz 18 (2006) 63–157 In Russian; translated in St. Petersburg Math. J. 18 (2007) 391–457
  • R Zarev, Bordered Floer homology for sutured manifolds, preprint (2009)