Geometry & Topology

Variation of Gieseker moduli spaces via quiver GIT

Daniel Greb, Julius Ross, and Matei Toma

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/gt.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We introduce a notion of stability for sheaves with respect to several polarisations that generalises the usual notion of Gieseker stability. Under a boundedness assumption which we show to hold on threefolds or for rank two sheaves on base manifolds of arbitrary dimension, we prove that semistable sheaves have a projective coarse moduli space that depends on a natural stability parameter. We then give two applications of this machinery. First, we show that given a real ample class ω N1(X) on a smooth projective threefold X there exists a projective moduli space of sheaves that are Gieseker semistable with respect to ω. Second, we prove that given any two ample line bundles on X the corresponding Gieseker moduli spaces are related by Thaddeus flips.

Article information

Source
Geom. Topol., Volume 20, Number 3 (2016), 1539-1610.

Dates
Received: 26 September 2014
Revised: 5 June 2015
Accepted: 3 July 2015
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1510858997

Digital Object Identifier
doi:10.2140/gt.2016.20.1539

Mathematical Reviews number (MathSciNet)
MR3523063

Zentralblatt MATH identifier
06624253

Subjects
Primary: 14D20: Algebraic moduli problems, moduli of vector bundles {For analytic moduli problems, see 32G13} 14J60: Vector bundles on surfaces and higher-dimensional varieties, and their moduli [See also 14D20, 14F05, 32Lxx] 32G13: Analytic moduli problems {For algebraic moduli problems, see 14D20, 14D22, 14H10, 14J10} [See also 14H15, 14J15]
Secondary: 14L24: Geometric invariant theory [See also 13A50] 16G20: Representations of quivers and partially ordered sets

Keywords
Gieseker stability variation of moduli spaces chamber structures boundedness moduli of quiver representations semistable sheaves on Kähler manifolds

Citation

Greb, Daniel; Ross, Julius; Toma, Matei. Variation of Gieseker moduli spaces via quiver GIT. Geom. Topol. 20 (2016), no. 3, 1539--1610. doi:10.2140/gt.2016.20.1539. https://projecteuclid.org/euclid.gt/1510858997


Export citation

References

  • L Álvarez-Cónsul, Some results on the moduli spaces of quiver bundles, Geom. Dedicata 139 (2009) 99–120
  • L Álvarez-Cónsul, A King, A functorial construction of moduli of sheaves, Invent. Math. 168 (2007) 613–666
  • L Álvarez-Cónsul, A King, Moduli of sheaves from moduli of Kronecker modules, from: “Moduli spaces and vector bundles”, (S B Bradlow, L Brambila-Paz, O García-Prada, S Ramanan, editors), London Math. Soc. Lecture Note Ser. 359, Cambridge Univ. Press (2009) 212–228
  • I V Arzhantsev, J Hausen, Geometric invariant theory via Cox rings, J. Pure Appl. Algebra 213 (2009) 154–172
  • A Bertram, Some remarks on surface moduli and determinants, from: “Recent advances in algebraic geometry”, (C D Hacon, M Mustaţă, M Popa, editors), London Math. Soc. Lecture Note Ser. 417, Cambridge Univ. Press (2015) 13–28
  • N Bourbaki, Éléments de mathématique: Algèbre, Chapitres 1 à 3, Hermann, Paris (1970)
  • C Chindris, Notes on GIT-fans for quivers, preprint (2008)
  • O Debarre, Higher-dimensional algebraic geometry, Springer, New York (2001)
  • I V Dolgachev, Y Hu, Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math. (1998) 5–56
  • S K Donaldson, Irrationality and the $h$–cobordism conjecture, J. Differential Geom. 26 (1987) 141–168
  • G Ellingsrud, L G öttsche, Variation of moduli spaces and Donaldson invariants under change of polarization, J. Reine Angew. Math. 467 (1995) 1–49
  • R Friedman, J W Morgan, On the diffeomorphism types of certain algebraic surfaces, I, J. Differential Geom. 27 (1988) 297–369
  • R Friedman, Z Qin, Flips of moduli spaces and transition formulas for Donaldson polynomial invariants of rational surfaces, Comm. Anal. Geom. 3 (1995) 11–83
  • W Fulton, Intersection theory, 2nd edition, Ergeb. Math. Grenzgeb. 2, Springer, Berlin (1998)
  • V Ginzburg, Lectures on Nakajima's quiver varieties, from: “Geometric methods in representation theory, I”, (M Brion, editor), Sémin. Congr. 24, Soc. Math. France, Paris (2012) 145–219
  • L G öttsche, Change of polarization and Hodge numbers of moduli spaces of torsion free sheaves on surfaces, Math. Z. 223 (1996) 247–260
  • D Greb, Projectivity of analytic Hilbert and Kähler quotients, Trans. Amer. Math. Soc. 362 (2010) 3243–3271
  • D Greb, J Ross, M Toma, Semi-continuity of stability for sheaves and variation of Gieseker moduli spaces, preprint (2015) to appear in J. Reine Ang. Math.
  • D Greb, M Toma, Compact moduli spaces for slope-semistable sheaves, preprint (2013) to appear in Alg. Geom.
  • A Grothendieck, Techniques de construction et théorèmes d'existence en géométrie algébrique, IV: Les schémas de Hilbert, from: “Séminaire Bourbaki $1960/1961$ (Exposè 221)”, W A Benjamin, New York (1966) Reprinted as pages 249–276 in Séminaire Bourbaki 6, Soc. Math. France, Paris, 1995
  • M Halic, Quotients of affine spaces for actions of reductive groups, preprint (2004)
  • R Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer, New York (1977)
  • P Heinzner, L Migliorini, Projectivity of moment map quotients, Osaka J. Math. 38 (2001) 167–184
  • Y Hu, W-P Li, Variation of the Gieseker and Uhlenbeck compactifications, Internat. J. Math. 6 (1995) 397–418
  • D Huybrechts, M Lehn, The geometry of moduli spaces of sheaves, 2nd edition, Cambridge Univ. Press (2010)
  • D Joyce, Configurations in abelian categories, I: Basic properties and moduli stacks, Adv. Math. 203 (2006) 194–255
  • D Joyce, Configurations in abelian categories, II: Ringel–Hall algebras, Adv. Math. 210 (2007) 635–706
  • D Joyce, Configurations in abelian categories, III: Stability conditions and identities, Adv. Math. 215 (2007) 153–219
  • D Joyce, Configurations in abelian categories, IV: Invariants and changing stability conditions, Adv. Math. 217 (2008) 125–204
  • D Joyce, Y Song, A theory of generalized Donaldson–Thomas invariants, Mem. Amer. Math. Soc. 1020, Amer. Math. Soc., Providence, RI (2012)
  • Y-H Kiem, J Li, A wall crossing formula of Donaldson–Thomas invariants without Chern–Simons functional, Asian J. Math. 17 (2013) 63–94
  • A D King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. 45 (1994) 515–530
  • A Langer, Semistable sheaves in positive characteristic, Ann. of Math. 159 (2004) 251–276
  • S G Langton, Valuative criteria for families of vector bundles on algebraic varieties, Ann. of Math. 101 (1975) 88–110
  • A Laudin, A Schmitt, Recent results on quiver sheaves, Cent. Eur. J. Math. 10 (2012) 1246–1279
  • J Le Potier, L'espace de modules de Simpson, exposé, SGA Jussieu (1992) Available at \setbox0\makeatletter\@url https://www.imj-prg.fr/tga/jlp/scandrezetX1.pdf {\unhbox0
  • S Mac Lane, Categories for the working mathematician, 2nd edition, Graduate Texts in Mathematics 5, Springer, New York (1998)
  • K Matsuki, R Wentworth, Mumford–Thaddeus principle on the moduli space of vector bundles on an algebraic surface, Internat. J. Math. 8 (1997) 97–148
  • D Mumford, J Fogarty, F Kirwan, Geometric invariant theory, 3rd edition, Ergeb. Math. Grenzgeb. 34, Springer, Berlin (1994)
  • Z Qin, Equivalence classes of polarizations and moduli spaces of sheaves, J. Differential Geom. 37 (1993) 397–415
  • A Rudakov, Stability for an abelian category, J. Algebra 197 (1997) 231–245
  • A Schmitt, Walls for Gieseker semistability and the Mumford–Thaddeus principle for moduli spaces of sheaves over higher dimensional bases, Comment. Math. Helv. 75 (2000) 216–231
  • A Schmitt, Moduli for decorated tuples of sheaves and representation spaces for quivers, Proc. Indian Acad. Sci. Math. Sci. 115 (2005) 15–49
  • A H W Schmitt, Geometric invariant theory and decorated principal bundles, European Math. Soc., Zürich (2008)
  • C T Simpson, Moduli of representations of the fundamental group of a smooth projective variety, I, Inst. Hautes Études Sci. Publ. Math. (1994) 47–129
  • A Teleman, Families of holomorphic bundles, Commun. Contemp. Math. 10 (2008) 523–551
  • M Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996) 691–723
  • K Yamada, A sequence of blowing-ups connecting moduli of sheaves and the Donaldson polynomial under change of polarization, J. Math. Kyoto Univ. 43 (2004) 829–878
  • K Yamada, Blowing-ups describing the polarization change of moduli schemes of semistable sheaves of general rank, Comm. Algebra 38 (2010) 3094–3110