Geometry & Topology

Nonorientable surfaces in homology cobordisms

Adam Levine, Daniel Ruberman, and Sašo Strle

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/gt.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We investigate constraints on embeddings of a nonorientable surface in a 4–manifold with the homology of M × I, where M is a rational homology 3–sphere. The constraints take the form of inequalities involving the genus and normal Euler class of the surface, and either the Ozsváth–Szabó d–invariants or Atiyah–Singer ρ–invariants of M. One consequence is that the minimal genus of a smoothly embedded surface in L(2k,q) × I is the same as the minimal genus of a surface in L(2k,q). We also consider embeddings of nonorientable surfaces in closed 4–manifolds.

Article information

Source
Geom. Topol., Volume 19, Number 1 (2015), 439-494.

Dates
Received: 9 November 2013
Accepted: 25 May 2014
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.gt/1510858685

Digital Object Identifier
doi:10.2140/gt.2015.19.439

Mathematical Reviews number (MathSciNet)
MR3318756

Zentralblatt MATH identifier
1311.57019

Subjects
Primary: 57M27: Invariants of knots and 3-manifolds
Secondary: 57R40: Embeddings 57R58: Floer homology

Keywords
nonorientable surfaces $4$–manifold Heegaard Floer homology Dedekind sums

Citation

Levine, Adam; Ruberman, Daniel; Strle, Sašo. Nonorientable surfaces in homology cobordisms. Geom. Topol. 19 (2015), no. 1, 439--494. doi:10.2140/gt.2015.19.439. https://projecteuclid.org/euclid.gt/1510858685


Export citation

References

  • M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405–432
  • M F Atiyah, I M Singer, The index of elliptic operators, III, Ann. of Math. 87 (1968) 546–604
  • J Batson, Nonorientable four-ball genus can be arbitrarily large
  • M Beck, Geometric proofs of polynomial reciprocity laws of Carlitz, Berndt and Dieter, from: “Diophantine analysis and related fields 2006”, (M Katsurada, T Komatsu, H Nakada, editors), Sem. Math. Sci. 35, Keio Univ., Yokohama (2006) 11–18
  • M Beck, C Haase, A R Matthews, Dedekind–Carlitz polynomials as lattice-point enumerators in rational polyhedra, Math. Ann. 341 (2008) 945–961
  • M Beck, F Kohl, Rademacher–Carlitz polynomials, Acta Arith. 163 (2014) 379–393
  • B C Berndt, U Dieter, Sums involving the greatest integer function and Riemann–Stieltjes integration, J. Reine Angew. Math. 337 (1982) 208–220
  • G E Bredon, J W Wood, Nonorientable surfaces in orientable $3$–manifolds, Invent. Math. 7 (1969) 83–110
  • K S Brown, Cohomology of groups, Graduate Texts in Math. 87, Springer (1994)
  • D Calegari, C Gordon, Knots with small rational genus, Comment. Math. Helv. 88 (2013) 85–130
  • L Carlitz, Some theorems on generalized Dedekind–Rademacher sums, Pacific J. Math. 75 (1978) 347–358
  • A J Casson, C M Gordon, On slice knots in dimension three, from: “Algebraic and geometric topology, Part 2”, (R J Milgram, editor), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 39–53
  • A J Casson, C M Gordon, Cobordism of classical knots, from: “À la recherche de la topologie perdue”, (L Guillou, A Marin, editors), Progress in Math. 62, Birkhäuser, Boston (1986) 181–199
  • R H Fox, Free differential calculus, I: Derivation in the free group ring, Ann. of Math. 57 (1953) 547–560
  • M H Freedman, F Quinn, Topology of $4$–manifolds, Princeton Math. Series 39, Princeton Univ. Press (1990)
  • M Furuta, Monopole equation and the $\frac{11}8$–conjecture, Math. Res. Lett. 8 (2001) 279–291
  • D Gabai, Foliations and the topology of $3$–manifolds, J. Differential Geom. 18 (1983) 445–503
  • I M Gessel, Generating functions and generalized Dedekind sums, Electron. J. Combin. 4 (1997)
  • P M Gilmer, Configurations of surfaces in $4$–manifolds, Trans. Amer. Math. Soc. 264 (1981) 353–380
  • R E Gompf, A I Stipsicz, $4$–manifolds and Kirby calculus, Graduate Studies in Math. 20, Amer. Math. Soc. (1999)
  • C M Gordon, Knots, homology spheres, and contractible $4$–manifolds, Topology 14 (1975) 151–172
  • J E Greene, A S Levine, Strong Heegaard diagrams and strong $L$–spaces
  • L Guillou, A Marin, Une extension d'un théorème de Rohlin sur la signature, from: “À la recherche de la topologie perdue”, (L Guillou, A Marin, editors), Progr. Math. 62, Birkhäuser, Boston (1986) 97–118
  • M Hedden, Knot Floer homology of Whitehead doubles, Geom. Topol. 11 (2007) 2277–2338
  • M Hedden, On Floer homology and the Berge conjecture on knots admitting lens space surgeries, Trans. Amer. Math. Soc. 363 (2011) 949–968
  • M Hedden, S-G Kim, C Livingston, Topologically slice knots of smooth concordance order two
  • S Jabuka, S Robins, X Wang, Heegaard Floer correction terms and Dedekind–Rademacher sums, Int. Math. Res. Not. 2013 (2013) 170–183
  • S J Kaplan, Constructing framed $4$–manifolds with given almost framed boundaries, Trans. Amer. Math. Soc. 254 (1979) 237–263
  • P Kirk, E Klassen, D Ruberman, Splitting the spectral flow and the Alexander matrix, Comment. Math. Helv. 69 (1994) 375–416
  • P Kronheimer, T Mrowka, P S Ozsváth, Z Szabó, Monopoles and lens space surgeries, Ann. of Math. 165 (2007) 457–546
  • T Lawson, Normal bundles for an embedded $\mathbb{RP}\sp 2$ in a positive definite $4$–manifold, J. Differential Geom. 22 (1985) 215–231
  • D A Lee, R Lipshitz, Covering spaces and $\mathbb{Q}$–gradings on Heegaard Floer homology, J. Symplectic Geom. 6 (2008) 33–59
  • A S Levine, S Lewallen, Strong $L$–spaces and left-orderability, Math. Res. Lett. 19 (2012) 1237–1244
  • A S Levine, D Ruberman, Generalized Heegaard Floer correction terms, to appear in Proceedings of Gökova Geometry-Topology Conference 2013
  • B H Li, Generalization of the Whitney–Mahowald theorem, Trans. Amer. Math. Soc. 346 (1994) 511–521
  • T Lidman, On the infinity flavor of Heegaard Floer homology and the integral cohomology ring, Comment. Math. Helv. 88 (2013) 875–898
  • P Lisca, A I Stipsicz, Ozsváth–Szabó invariants and tight contact $3$–manifolds, III, J. Symplectic Geom. 5 (2007) 357–384
  • M Mahowald, On the normal bundle of a manifold, Pacific J. Math. 14 (1964) 1335–1341
  • W S Massey, Pontryagin squares in the Thom space of a bundle, Pacific J. Math. 31 (1969) 133–142
  • W S Massey, Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969) 143–156
  • Y Matsumoto, An elementary proof of Rochlin's signature theorem and its extension by Guillou and Marin, from: “À la recherche de la topologie perdue”, (L Guillou, A Marin, editors), Progr. Math. 62, Birkhäuser, Boston (1986) 119–139
  • J Morgan, G Tian, Ricci flow and the Poincaré conjecture, Clay Math. Monographs 3, Amer. Math. Soc. (2007)
  • R E Mosher, M C Tangora, Cohomology operations and applications in homotopy theory, Harper & Row (1968)
  • R E Mosher, M C Tangora, Kogomologicheskie operatsii i ikh prilozheniya v teorii gomotopii, Izdat. Mir, Moscow (1970) Translated from the English by M M Postnikov
  • Y Ni, Z Wu, Heegaard Floer correction terms and rational genus bounds, Adv. Math. 267 (2014) 360–380
  • P Orlik, Seifert manifolds, Lecture Notes in Math. 291, Springer, Berlin (1972)
  • P S Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179–261
  • P S Ozsváth, Z Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003) 185–224
  • P S Ozsváth, Z Szabó, Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008) 101–153
  • G Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds
  • M R Pettet, R Sitaramachandra Rao, Three-term relations for Hardy sums, J. Number Theory 25 (1987) 328–339
  • L Pontryagin, Mappings of the three-dimensional sphere into an $n$–dimensional complex, C. R. $($Doklady$)$ Acad. Sci. URSS 34 (1942) 35–37
  • M M Postnikov, The classification of continuous mappings of a three-dimensional polyhedron into a simply connected polyhedron of arbitrary dimension, Doklady Akad. Nauk SSSR 64 (1949) 461–462
  • J Rasmussen, Lens space surgeries and $L$–space homology spheres
  • P Scott, The geometries of $3$–manifolds, Bull. London Math. Soc. 15 (1983) 401–487
  • M Tange, Ozsváth–Szabó's correction term and lens surgery, Math. Proc. Cambridge Philos. Soc. 146 (2009) 119–134
  • V Turaev, A function on the homology of $3$–manifolds, Algebr. Geom. Topol. 7 (2007) 135–156
  • M Ue, On the intersection forms of spin $4$–manifolds bounded by spherical $3$–manifolds, Algebr. Geom. Topol. 1 (2001) 549–578
  • J H C Whitehead, On the theory of obstructions, Ann. of Math. 54 (1951) 68–84
  • H Whitney, On the topology of differentiable manifolds, from: “Lectures in Topology”, Univ. of Michigan Press (1941) 101–141