Functiones et Approximatio Commentarii Mathematici

Theta products and eta quotients of level $24$ and weight $2$

Ayşe Alaca, Şaban Alaca, and Zafer Selcuk Aygin

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We find bases for the spaces $M_2\Big(\Gamma_0(24),(\frac{d}{\cdot})\Big)$ ($d=1,8,12, 24$) of modular forms. We determine the Fourier coefficients of all $35$ theta products $\varphi[a_1,a_2,a_3,a_4](z)$ in these spaces. We then deduce formulas for the number of representations of a positive integer $n$ by diagonal quaternary quadratic forms with coefficients $1$, $2$, $3$ or $6$ in a uniform manner, of which $14$ are Ramanujan's universal quaternary quadratic forms. We also find all the eta quotients in the Eisenstein spaces $E_2\Big(\Gamma_0(24),(\frac{d}{\cdot})\Big)$ ($d=1,8,12, 24$) and give their Fourier coefficients.

Article information

Source
Funct. Approx. Comment. Math., Volume 57, Number 2 (2017), 205-234.

Dates
First available in Project Euclid: 28 March 2017

Permanent link to this document
https://projecteuclid.org/euclid.facm/1490688025

Digital Object Identifier
doi:10.7169/facm/1628

Mathematical Reviews number (MathSciNet)
MR3732896

Zentralblatt MATH identifier
06864172

Subjects
Primary: 11F11: Holomorphic modular forms of integral weight
Secondary: 11F20: Dedekind eta function, Dedekind sums 11F27: Theta series; Weil representation; theta correspondences 11E20: General ternary and quaternary quadratic forms; forms of more than two variables 11F30: Fourier coefficients of automorphic forms

Keywords
Dedekind eta function eta quotients theta products Eisenstein series modular forms cusp forms Fourier coefficients Fourier series

Citation

Alaca, Ayşe; Alaca, Şaban; Aygin, Zafer Selcuk. Theta products and eta quotients of level $24$ and weight $2$. Funct. Approx. Comment. Math. 57 (2017), no. 2, 205--234. doi:10.7169/facm/1628. https://projecteuclid.org/euclid.facm/1490688025


Export citation

References

  • A. Alaca, \c S. Alaca and Z. S. Aygin, Fourier coefficients of a class of eta quotients of weight $2$, Int. J. Number Theory 11 (2015), 2381–2392.
  • A. Alaca, \c S. Alaca and Z. S. Aygin, Fourier coefficients of eta quotients of levels $8$, $9$ and $10$, submitted for publication, 2017.
  • A. Alaca, S. Alaca, M. F. Lemire and K. S. Williams, Nineteen quaternary quadratic forms, Acta Arith. 130 (2007), 277–310.
  • A. Alaca and K. S. Williams, On the quaternary forms $x^2+y^2+2 z^2 +3 t^2$, $x^2+2y^2+2 z^2 +6 t^2$, $x^2+3y^2+3 z^2 +6 t^2$ and $2x^2+3y^2+6 z^2 +6 t^2$, Int. J. Number Theory 8 (2012), 1661–1686.
  • B.C. Berndt, Number Theory in the Spirit of Ramanujan, Amer. Math. Soc., Student Mathematical Library, 2006.
  • C.G.J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, 1829, reprinted in Gesammelte Werke Vol. 1, Chelsea, New York, 1969, 49–239.
  • L.J.P. Kilford, Modular Forms: A Classical and Computational Introduction, 2nd edition, Imperial College Press, London, 2015.
  • G. Köhler, Eta Products and Theta Series Identities, Springer Monographs in Mathematics, Springer, 2011.
  • G. Ligozat, Courbes modulaires de genre 1, Bull. Soc. Math. France 43 (1975), 5–80.
  • Y. Martin, Multiplicative $\eta$-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825–4856.
  • Y. Martin, K. Ono, Eta-quotients and Elliptic Curves, Proc. Amer. Math. Soc. 125 (1997), no. 11, 3169–3176.
  • K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, Amer. Math. Soc., CBMS Regional Conference Series in Mathematics, 2004.
  • S. Ramanujan, On the expression of a number in the form $ax^2+by^2+cz^2+d u^2$, Proc. Cambridge Philos. Soc. 19 (1917), 11–21.
  • W.A. Stein, Modular Forms, a Computational Approach, Amer. Math. Soc., Graduate Studies in Mathematics, 2007.
  • K.S. Williams, On the representations of a positive integer by the forms $x^2 + y^2 + z^2 + 2t^2$ and $x^2 +2y^2 +2z^2 +2t^2$, Int. J. Modern Math. 3 (2008), 225–230.
  • K.S. Williams, Number Theory in the Spirit of Liouville, London Math. Soc. Student Texts, Cambridge University Press, London, 2011.
  • K.S. Williams, Fourier series of a class of eta quotients, Int. J. Number Theory 8 (2012), 993–1004.