Functiones et Approximatio Commentarii Mathematici

The Fourier expansion of Hecke operators for vector-valued modular forms

Oliver Stein

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We compute the Fourier expansion of Hecke operators on vector-valued modular forms for the Weil representation associated to a lattice $L$. The Hecke operators considered in this paper include operators $T(p^{2l})$ where $p$ is a prime dividing the level of the lattice $L$. Additionally, an explicit formula for a general type of Gauss sum associated to a lattice $L$ drops out as a by-product.

Article information

Funct. Approx. Comment. Math., Volume 52, Number 2 (2015), 229-252.

First available in Project Euclid: 18 June 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11F25: Hecke-Petersson operators, differential operators (one variable) 11F27: Theta series; Weil representation; theta correspondences
Secondary: 11L05: Gauss and Kloosterman sums; generalizations 11E08: Quadratic forms over local rings and fields

Fourier expansion Hecke operators vector-valued modular forms Weil representation Gauss sums


Stein, Oliver. The Fourier expansion of Hecke operators for vector-valued modular forms. Funct. Approx. Comment. Math. 52 (2015), no. 2, 229--252. doi:10.7169/facm/2015.52.2.4.

Export citation


  • A. Barnard, The Singular Theta Correspondence, Lorentzian Lattices and Borcherds-Kac-Moody Algebras, Ph.D. Dissertation, U.C. Berkeley, 2003.
  • B. Berndt, R. Evans and K. Williams, Gauss and Jacobi sums, Canadian Mathematical Society series of monographs and advanced texts, 21, Wiley, 1998.
  • R. Borcherds, Automorphic forms with singularities on Grassmannians, Inv. Math. 132 (1998), 491–562.
  • R. Borcherds, Reflection groups of Lorentian lattices, Duke Math. J. 104 (2000), 319–366.
  • J.H. Bruinier, Borcherds products on $\ADGBOrth(2,l)$ and Chern classes of Heegner divisors, Springer Lecture Notes in Mathematics 1780, Springer-Verlag, 2002.
  • J.H. Bruinier and K. Ono, Heegner Divisors, L-functions and harmonic weak Maass forms, Annals of Math. 172 (2010), 2135–2181.
  • J.H. Bruinier and K. Ono, Algebraic formulas for the coefficients of half integral weight harmonic weak Mass forms, preprint (2011).
  • J.H. Bruinier and O. Stein, The Weil representation and Hecke operators on vector-valued modular forms, Math. Z. 264 (2010), 249–270.
  • M. Bundschuh, Über die Endlichkeit der Klassenzahl gerader Gitter der Signatur $(2,n)$ mit einfachem Kontrollraum, Dissertation, Universität Heidelberg, 2001.
  • J.H. Conway and H.J. Sloane, Sphere packings, lattices and groups, third edition. With additional contributions by E. Bannai, R.E. Borcherds, J. Leech, S.P. Norton, A.M. Odlyzko, R.A. Parker, L. Queen and B.B. Venkov. Grundlehren der Mathematischen Wissenschaften 290, Springer-Verlag, New York, 1999.
  • W. Ebeling, Lattices and codes, a course partially based on lectures by F. Hirzebruch, second revised edition, Advanced Lectures in Mathematics, Vieweg, Braunschweig, 2002.
  • M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Math. 55, Birkhäuser, 1985.
  • M. Kneser, Quadratische Formen, Neu bearbeitet und herausgegeben in Zusammenarbeitet mit Rudolf Scharlau, Springer Verlag, 2001.
  • A. Nobs and J. Wolfart, Die irreduziblen Darstellungen der Gruppen $\ADGBSl_2(\ADGBZ_p)$, insbesondere $\ADGBSl_2(\ADGBZ_2)$, I. Teil, Comment Math. Helvetici 51 (1976), 491–526.
  • N.R. Scheithauer, On the classification of automorphic products and generalized Kac-Moody algebras, Invent. Math. 164 (2006), 641–678.
  • N.R. Scheithauer, The Weil representation of $\ADGBSL_2(\ADGBZ)$ and some applications, Int. Math. Res. Not. 8 (2009), 1488–1545.
  • N.R. Scheithauer, Moonshine for Conway's group, Habilitationsschrift, Ruprecht-Karls-Universität Heidelberg, 2004.
  • G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press, Princeton, 1971.
  • G. Shimura, On modular forms of half integral weight, Annals of Math. 97 (1973), 440–481.
  • G. Shimura, The special values of the zeta functions associated to Hilbert modular forms, Duke Math. J. 45 (1978), no. 3, 637–679.
  • T. Shintani, On the construction of holomorphic cusp forms of half integral weight, Nagoya Math. J. 58 (1975), 83–126.
  • O. Stein, Hecke-Operatoren und vektorwertige Modulformen zur Weildarstellung, Dissertation, Universität zu Köln, 2007.
  • F. Strömberg, Weil representations associated to finite quadratic modules, Math. Z. 275 (2013), no. 2, 509–527.