Functiones et Approximatio Commentarii Mathematici

The Phragmén Lindelöf condition for evolution for quadratic forms

Chiara Boiti and Reinhold Meise

Full-text: Open access

Abstract

Let $P \in \mathbb{C}[\tau, \zeta_1, \ldots, \zeta_n]$ be a quadratic polynomial for which the $\tau$-variable is non-characteristic. We characterize when the zero-variety $V(P)$ of $P$ satisfies the Phragmén-Lindelöf condition $PL(\omega)$ or equivalently when the pair $(\mathbb{R}_x^n, \mathbb{R}_\tau \times \mathbb{R}_x^n)$ is of evolution in the class ${\mathcal E}_\omega$ for the partial differential operator $P(D)$ with symbol $P$.

Article information

Source
Funct. Approx. Comment. Math., Volume 44, Number 1 (2011), 111-131.

Dates
First available in Project Euclid: 30 March 2011

Permanent link to this document
https://projecteuclid.org/euclid.facm/1301497749

Digital Object Identifier
doi:10.7169/facm/1301497749

Mathematical Reviews number (MathSciNet)
MR2807901

Zentralblatt MATH identifier
1223.32020

Subjects
Primary: 32U05: Plurisubharmonic functions and generalizations [See also 31C10]
Secondary: 35E99: None of the above, but in this section 35L99: None of the above, but in this section

Keywords
Phragmén-Lindelöf conditions ultradifferentiable functions differential equations of evolution

Citation

Boiti, Chiara; Meise, Reinhold. The Phragmén Lindelöf condition for evolution for quadratic forms. Funct. Approx. Comment. Math. 44 (2011), no. 1, 111--131. doi:10.7169/facm/1301497749. https://projecteuclid.org/euclid.facm/1301497749


Export citation

References

  • C. Boiti, R. Meise, Characterization of algebraic curves that satisfy the Phragmén-Lindelöf principle for global evolution, Result. Math. 45 (2004), 201-229.
  • C. Boiti, R. Meise, Characterizing the Phragmén-Lindelöf condition for evolution on algebraic curves, to appear in Math. Nachrichten.
  • C. Boiti, R. Meise, Evolution for overdetermined systems in (small) Gevrey classes, Rend. Sem. Mat. Univ. Pol. Torino 67 (2009), 165-177.
  • C. Boiti, M. Nacinovich, The overdetermined Cauchy problem, Ann. Inst. Fourier Grenoble 47 (1997), 155-199.
  • C. Boiti, M. Nacinovich, The overdetermined Cauchy problem in some classes of ultradifferentiable functions, Ann. Mat. Pura Appl. 180 (2001), 81-126.
  • L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin (1969).
  • L. Hörmander, On the existence of real analytic solutions of linear partial differential equations with constant coefficients, Invent. math. 21 (1973), 151-183.
  • R. Meise, B.A. Taylor, D. Vogt, Extremal plurisubharmonic functions of linear growth on algebraic varieties, Math. Z. 219 (1995), 515-537.
  • R. Meise, B.A. Taylor, D. Vogt, Continuous linear right inverses for partial differential operators of order 2 and fundamental solutions in half spaces, Manuscripta Math. 90 (1996), 449-464.
  • R. Meise, B.A. Taylor, D. Vogt, $\omega$-Hyperbolicity of linear partial differential operators, "Complex Analysis, Harmonic Analysis and Applications", (Deville, R., Esterle, J., Petkov, V., Sebbar, A. and Yger, A. eds.), Pitman Research Notes, Math. Ser. 347 (1996), 157-182.