Functiones et Approximatio Commentarii Mathematici

Bound for the sum involving the Jacobi symbol in $\mathbb{Z}[i]$

Kazuhiro Onodera

Full-text: Open access

Abstract

We give a nontrivial estimate of a certain sum involving the Jacobi symbol in $\mathbb{Z}[i]$ which is a generalization of Heath-Brown's character sum estimate.

Article information

Source
Funct. Approx. Comment. Math., Volume 41, Number 1 (2009), 71-103.

Dates
First available in Project Euclid: 30 September 2009

Permanent link to this document
https://projecteuclid.org/euclid.facm/1254330160

Digital Object Identifier
doi:10.7169/facm/1254330160

Mathematical Reviews number (MathSciNet)
MR2568797

Zentralblatt MATH identifier
1263.11102

Subjects
Primary: 11L40: Estimates on character sums

Keywords
character sum Jacobi symbol

Citation

Onodera, Kazuhiro. Bound for the sum involving the Jacobi symbol in $\mathbb{Z}[i]$. Funct. Approx. Comment. Math. 41 (2009), no. 1, 71--103. doi:10.7169/facm/1254330160. https://projecteuclid.org/euclid.facm/1254330160


Export citation

References

  • D. R. Heath-Brown, A mean value estimate for real character sums, Acta Arith. 72 (1995), 235--275.
  • H. Iwaniec, P. Michel, The second moment of the symmetric square$L$-functions, Ann. Acad. Sci. Fenn. Math. 26 (2001), 465--482.
  • F. Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein, Springer-Verlag, Berlin, 2000.
  • A. Perelli, J. Pomykala, Averages of twisted elliptic $L$-functions, Acta Arith. 80 (1997), 149--163.
  • K. Soundararajan, Nonvanishing of quadratic Dirichlet $L$-functions as $s=\frac12$, Ann. of Math. (2) 152 (2000), 447--488.
  • G. N. Watson, A treatise on the theory of Bessel functions, second edition, Cambridge Univ. Press, Cambridge, 1996.