Functiones et Approximatio Commentarii Mathematici

Elliptic systems and material interpenetration

Giovanni Alessandrini and Vincenzo Nesi

Full-text: Open access

Abstract

We classify the second order, linear, two by two systems for which the two fundamental theorems for planar harmonic mappings, the Radó--Kneser--Choquet theorem and the H. Lewy theorem, hold. They are those which, up to a linear change of variable, can be written in diagonal form with \emph{the same} operator on both diagonal blocks. In particular, we prove that the aforementioned theorems cannot be extended to solutions of either the Lamé system of elasticity, or of elliptic systems in diagonal form, even with just slightly different operators for the two components.

Article information

Source
Funct. Approx. Comment. Math., Volume 40, Number 1 (2009), 105-115.

Dates
First available in Project Euclid: 30 March 2009

Permanent link to this document
https://projecteuclid.org/euclid.facm/1238418801

Digital Object Identifier
doi:10.7169/facm/1238418801

Mathematical Reviews number (MathSciNet)
MR2527631

Zentralblatt MATH identifier
1195.31002

Subjects
Primary: 31A05: Harmonic, subharmonic, superharmonic functions
Secondary: 35J25: Boundary value problems for second-order elliptic equations 30C60 53A10: Minimal surfaces, surfaces with prescribed mean curvature [See also 49Q05, 49Q10, 53C42]

Keywords
Harmonic mappings univalence

Citation

Alessandrini, Giovanni; Nesi, Vincenzo. Elliptic systems and material interpenetration. Funct. Approx. Comment. Math. 40 (2009), no. 1, 105--115. doi:10.7169/facm/1238418801. https://projecteuclid.org/euclid.facm/1238418801


Export citation

References

  • G. Alessandrini, V. Nesi, Univalent $\sigma$-harmonic mappings, Arch. Ration. Mech. Anal. 158 (2001), no. 2, 155--171.
  • --------, Invertible harmonic mappings, beyond Kneser, http://arxiv.org/abs/0712.3840, 2008, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., to appear.
  • --------, Beltrami operators, non--symmetric elliptic equations and quantitative Jacobian bounds, Ann. Acad. Sci. Fenn. Math. 34 (2009), 47--67.
  • G. Alessandrini, M. Sigalotti, Geometric properties of solutions to the anisotropic $p$-Laplace equation in dimension two, Ann. Acad. Sci. Fenn. Math. 26 (2001), no. 1, 249--266.
  • J. M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter, Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), no. 3-4, 315--328.
  • P. Bauman, A. Marini, V. Nesi, Univalent solutions of an elliptic system of partial differential equations arising in homogenization, Indiana Univ. Math. J. 50 (2001), no. 2, 747--757.
  • G. Choquet, Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques, Bull. Sci. Math. (2) 69 (1945), 156--165.
  • P. G. Ciarlet, Mathematical elasticity. Vol. I. Three-dimensional elasticity, Studies in Mathematics and its Applications, vol. 20, North-Holland Publishing Co., Amsterdam, 1988.
  • B. Dacorogna, Direct methods in the calculus of variations, second ed., Applied Mathematical Sciences, vol. 78, Springer, New York, 2008.
  • E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital. (4) 1 (1968), 135--137.
  • P. Duren, Harmonic mappings in the plane, Cambridge Tracts in Mathematics, vol. 156, Cambridge University Press, Cambridge, 2004.
  • R. Fosdick, G. Royer-Carfagni, The constraint of local injectivity in linear elasticity theory, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), no. 2013, 2167--2187.
  • S. G. Lekhnitskii, Anisotropic plates, Gordon & Breach, New York, 1968.
  • S. Gleason, T.H. Wolff, Lewy's harmonic gradient maps in higher dimensions, Comm. Partial Differential Equations 16 (1991), no. 12, 1925--1968.
  • J. Jost, Univalency of harmonic mappings between surfaces, J. Reine Angew. Math. 324 (1981), 141--153.
  • H. Kneser, Lösung der Aufgabe 41, Jber. Deutsch. Math.-Verein. 35 (1926), 123--124.
  • R. S. Laugesen, Injectivity can fail for higher-dimensional harmonic extensions, Complex Variables Theory Appl. 28 (1996), no. 4, 357--369.
  • H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Am. Math. Soc. 42 (1936), 689--692.
  • --------, On the non-vanishing of the jacobian of a homeomorphism by harmonic gradients, Ann. of Math. (2) 88 (1968), 518--529.
  • G. H. Meisters, C. Olech, Locally one-to-one mappings and a classical theorem on schlicht functions, Duke Math. J. 30 (1963), 63--80.
  • A. D. Melas, An example of a harmonic map between Euclidean balls, Proc. Amer. Math. Soc. 117 (1993), no. 3, 857--859.
  • T. Radó, Aufgabe 41, Jber. Deutsch. Math.-Verein. 35 (1926), 49.
  • R. Schoen, S. T. Yau, On univalent harmonic maps between surfaces, Invent. Math. 44 (1978), no. 3, 265--278.
  • J. C. Wood, Lewy's theorem fails in higher dimensions, Math. Scand. 69 (1991), no. 2, 166 (1992).