Functiones et Approximatio Commentarii Mathematici

Sommes d'exponentielles friables d'arguments rationnels

Gérald Tenenbaum and Régis de la Bretèche

Full-text: Open access

Abstract

Let $\mathcal{M}$ denote the class of multiplicative functions with values in the unit disk, and, for $x\geq 1$, $y\geq 1$, let $S(x,y)$ designate the set of $y$-friable positive integers not exceeding $x$. We provide, as $x$ and $y$ tend to infinity in prescribed ranges, upper bounds for exponential sums of the form $$E_f(x,y;\vartheta):=\sum_{n\in S(x,y)}f(n)\hbox{\rm e}^{2\pi i n\vartheta}$$ whenever $f\in \mathcal{M}$ and $\vartheta$ is a rational number with denominator not exceeding a fixed power of $\log x$.

Article information

Source
Funct. Approx. Comment. Math., Volume 37, Number 1 (2007), 31-38.

Dates
First available in Project Euclid: 18 December 2008

Permanent link to this document
https://projecteuclid.org/euclid.facm/1229618739

Digital Object Identifier
doi:10.7169/facm/1229618739

Mathematical Reviews number (MathSciNet)
MR2357307

Zentralblatt MATH identifier
1230.11098

Subjects
Primary: 11L03: Trigonometric and exponential sums, general
Secondary: 11L07: Estimates on exponential sums 11N25: Distribution of integers with specified multiplicative constraints 11N37: Asymptotic results on arithmetic functions

Keywords
friable integers exponential sums exponential sums with multiplicative coefficients

Citation

de la Bretèche, Régis; Tenenbaum, Gérald. Sommes d'exponentielles friables d'arguments rationnels. Funct. Approx. Comment. Math. 37 (2007), no. 1, 31--38. doi:10.7169/facm/1229618739. https://projecteuclid.org/euclid.facm/1229618739


Export citation

References

  • G. Bachman, Exponential sums with multiplicative coefficients, Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 128--135.
  • G. Bachman, On exponential sums with multiplicative coefficients, II, Acta Arith. 106 (2003), n$^\circ$1, 41--57.
  • R. de la Bretèche, Sommes d'exponentielles et entiers sans grand facteur premier, Proc. London Math. Soc. (3) 77 (1998), 39--78.
  • R. de la Bretèche, Sommes sans grand facteur premier, Acta Arith. 88 n$^\circ$1 (1999), 1--14.
  • R. de la Bretèche & G. Tenenbaum, Séries trigonométriques à coefficients arithmétiques, J. Anal. Math. 92 (2004), 1--79.
  • R. de la Bretéche & G. Tenenbaum, Propriétés statistiques des entiers friables, Ramanujan J. 9 (2005), 139--202.
  • R. de la Bretèche & G. Tenenbaum, Entiers friables : inégalité de Turán--Kubilius et applications, Invent. Math. 159 (2005), 531--588.
  • H. Daboussi & H. Delange, On multiplicative arithmetical functions whose modulus does not exceed one, J. London Math. Soc. (2) 26 (1982), n$^\circ$ 2, 245--264.
  • É. Fouvry & G. Tenenbaum, Entiers sans grand facteur premier en progressions arithmétiques, Proc. London Math. Soc. (3) 63 (1991), 449--494.
  • A. Hildebrand, On the local behaviour of $\Psi(x,y)$, Trans. Amer. Math. Soc. 295 (1986), 729--751.
  • H. Maier, Exponential sums with multiplicative coefficients over smooth integers, Functiones et Approximatio 35, (2006), 209--218.
  • H. Maier & A. Sankaranarayanan, On a certain general exponential sum, Int. J. Number Theory 1 (2005), no. 2, 183--192.
  • H.L. Montgomery & R.C. Vaughan, Exponential sums with multiplicative coefficients, Invent. Math. 43 (1977), n$^\circ$ 1, 69--82.
  • R.C. Vaughan, A new iterative method in Waring's problem, Acta Math. 162 (1989), 1--71.
  • R.C. Vaughan & T.D. Wooley, Waring's problem: a survey, Number theory for the millennium, III (Urbana, IL, 2000), 301--340, A. K. Peters, Natick, MA, 2002.
  • T.D. Wooley, On exponential sums over smooth numbers. J. reine angew. Math. 488 (1997), 79--140.