## Experimental Mathematics

- Experiment. Math.
- Volume 20, Issue 4 (2011), 373-379.

### Rational Points on Some Fano Quadratic Bundles

#### Abstract

We study the number of rational points of bounded height on a certain threefold. The accumulating subvarieties are Zariski dense in this example. The computations support an extension of a conjecture of Manin to this situation.

#### Article information

**Source**

Experiment. Math., Volume 20, Issue 4 (2011), 373-379.

**Dates**

First available in Project Euclid: 8 December 2011

**Permanent link to this document**

https://projecteuclid.org/euclid.em/1323367152

**Mathematical Reviews number (MathSciNet)**

MR2859896

**Zentralblatt MATH identifier**

1269.11063

**Subjects**

Primary: 11D45: Counting solutions of Diophantine equations 11Y50: Computer solution of Diophantine equations 14G05: Rational points

**Keywords**

Quadratic bundle Manin’s Conjecture accumulating subvariety

#### Citation

Elsenhans, Andreas-Stephan. Rational Points on Some Fano Quadratic Bundles. Experiment. Math. 20 (2011), no. 4, 373--379. https://projecteuclid.org/euclid.em/1323367152