Experimental Mathematics

On Bicycle Tire Tracks Geometry, Hatchet Planimeter, Menzin's Conjecture, and Oscillation of Unicycle Tracks

Mark Levi and Serge Tabachnikov

Full-text: Open access

Abstract

The model of a bicycle is a unit segment $AB$ that can move in the plane so that it remains tangent to the trajectory of the point $A$ (the rear wheel is fixed to the bicycle frame). The same model describes the hatchet planimeter. The trajectory of the front wheel and the initial position of the bicycle uniquely determine its motion and its terminal position; the monodromy map sending the initial position to the final position arises in this context.

According to a theorem of R. Foote, this mapping of a circle to a circle is a Möbius transformation. We extend this result to the multidimensional setting. Möbius transformations belong to one of three types: elliptic, parabolic, and hyperbolic. We prove the century-old Menzin conjecture: if the front wheel track is an oval with area at least $\pi$, then the respective monodromy is hyperbolic. We also study bicycle motions introduced by D. Finn in which the rear wheel follows the track of the front wheel. Such a ``unicycle'' track becomes more and more oscillatory in the forward direction. We prove that it cannot be infinitely extended backward and relate the problem to the geometry of the space of forward semi-infinite equilateral linkages.

Article information

Source
Experiment. Math., Volume 18, Issue 2 (2009), 173-186.

Dates
First available in Project Euclid: 25 November 2009

Permanent link to this document
https://projecteuclid.org/euclid.em/1259158427

Mathematical Reviews number (MathSciNet)
MR2549686

Zentralblatt MATH identifier
1185.37146

Subjects
Primary: 37J60: Nonholonomic dynamical systems [See also 70F25]
Secondary: 53A17: Kinematics 53C44: Geometric evolution equations (mean curvature flow, Ricci flow, etc.) 70F25: Nonholonomic systems

Keywords
Möbius transformation contact element isoperimetric inequality Wirtinger inequality unicycle track

Citation

Levi, Mark; Tabachnikov, Serge. On Bicycle Tire Tracks Geometry, Hatchet Planimeter, Menzin's Conjecture, and Oscillation of Unicycle Tracks. Experiment. Math. 18 (2009), no. 2, 173--186. https://projecteuclid.org/euclid.em/1259158427


Export citation