## Experimental Mathematics

- Experiment. Math.
- Volume 17, Issue 2 (2008), 205-221.

### Exploring the Space of Embedded Minimal Surfaces of Finite Total Curvature

#### Abstract

We investigate, both numerically and mathematically, several questions about embedded minimal surfaces of finite total curvature in Euclidean space. We also describe how a theoretical construction can be implemented numerically to produce pictures of such surfaces.

#### Article information

**Source**

Experiment. Math., Volume 17, Issue 2 (2008), 205-221.

**Dates**

First available in Project Euclid: 19 November 2008

**Permanent link to this document**

https://projecteuclid.org/euclid.em/1227118972

**Mathematical Reviews number (MathSciNet)**

MR2433886

**Zentralblatt MATH identifier**

1159.53005

**Subjects**

Primary: 53A10: Minimal surfaces, surfaces with prescribed mean curvature [See also 49Q05, 49Q10, 53C42]

**Keywords**

Minimal surface balanced configuration opening nodes

#### Citation

Traizet, Martin. Exploring the Space of Embedded Minimal Surfaces of Finite Total Curvature. Experiment. Math. 17 (2008), no. 2, 205--221. https://projecteuclid.org/euclid.em/1227118972