Experimental Mathematics

Exploring the Space of Embedded Minimal Surfaces of Finite Total Curvature

Martin Traizet

Full-text: Open access

Abstract

We investigate, both numerically and mathematically, several questions about embedded minimal surfaces of finite total curvature in Euclidean space. We also describe how a theoretical construction can be implemented numerically to produce pictures of such surfaces.

Article information

Source
Experiment. Math., Volume 17, Issue 2 (2008), 205-221.

Dates
First available in Project Euclid: 19 November 2008

Permanent link to this document
https://projecteuclid.org/euclid.em/1227118972

Mathematical Reviews number (MathSciNet)
MR2433886

Zentralblatt MATH identifier
1159.53005

Subjects
Primary: 53A10: Minimal surfaces, surfaces with prescribed mean curvature [See also 49Q05, 49Q10, 53C42]

Keywords
Minimal surface balanced configuration opening nodes

Citation

Traizet, Martin. Exploring the Space of Embedded Minimal Surfaces of Finite Total Curvature. Experiment. Math. 17 (2008), no. 2, 205--221. https://projecteuclid.org/euclid.em/1227118972


Export citation