Electronic Journal of Statistics

Goodness-of-fit testing the error distribution in multivariate indirect regression

Justin Chown, Nicolai Bissantz, and Holger Dette

Full-text: Open access

Abstract

We propose a goodness-of-fit test for the distribution of errors from a multivariate indirect regression model, which we assume belongs to a location-scale family under the null hypothesis. The test statistic is based on the Khmaladze transformation of the empirical process of standardized residuals. This goodness-of-fit test is consistent at the root-$n$ rate of convergence, and the test can maintain power against local alternatives converging to the null at a root-$n$ rate.

Article information

Source
Electron. J. Statist., Volume 13, Number 2 (2019), 2658-2685.

Dates
Received: December 2018
First available in Project Euclid: 14 August 2019

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1565748204

Digital Object Identifier
doi:10.1214/19-EJS1591

Mathematical Reviews number (MathSciNet)
MR3992501

Zentralblatt MATH identifier
07104727

Subjects
Primary: 62G10: Hypothesis testing 62G30: Order statistics; empirical distribution functions
Secondary: 62G05: Estimation 62G08: Nonparametric regression

Keywords
Hypothesis testing indirect regression inverse problems multivariate regression regularization

Rights
Creative Commons Attribution 4.0 International License.

Citation

Chown, Justin; Bissantz, Nicolai; Dette, Holger. Goodness-of-fit testing the error distribution in multivariate indirect regression. Electron. J. Statist. 13 (2019), no. 2, 2658--2685. doi:10.1214/19-EJS1591. https://projecteuclid.org/euclid.ejs/1565748204


Export citation

References

  • Adorf, H. M. (1995). Hubble Space Telescope image restoration in its fourth year., Inverse Problems 11 639–653.
  • Akritas, M. G. and Van Keilegom, I. (2001). Non-parametric estimation of the residual distribution., Scand. J. Statist. 28 549–567.
  • Bertero, M., Boccacci, P., Desiderà, G. and Vicidomini, G. (2009). Image deblurring with Poisson data: from cells to galaxies., Inverse Problems 25 123006.
  • Bickel, P. J., Ritov, Y. and Stoker, T. M. (2006). Tailor-made tests for goodness of fit to semiparametric hypotheses., Ann. Statist. 34 721–741.
  • Birke, M., Bissantz, N. and Holzmann, H. (2010). Confidence bands for inverse regression models., Inverse Problems 26 115020.
  • Bissantz, N. and Holzmann, H. (2008). Statistical inference for inverse problems., Inverse Problems 24 034009.
  • Bissantz, N., Claeskens, G., Holzmann, H. and Munk, A. (2009). Testing for lack of fit in inverse regression: with applications to biophotonic imaging., J. R. Stat. Soc. Ser. B Stat. Methodol. 71 25–48.
  • Bissantz, N., Dette, H., Hildebrandt, T. and Bissantz, K. (2016). Smooth backfitting in additive inverse regression., Ann. Inst. Statist. Math. 68 827–853.
  • Can, S. U., Einmahl, J. H. J., Khmaladze, E. V. and Laeven, R. J. A. (2015). Asymptotically distribution-free goodness-of-fit testing for tail copulas., Ann. Statist. 43 878–902.
  • Cavalier, L. (2008). Nonparametric statistical inverse problems., Inverse Problems 24 034004.
  • Cavalier, L. and Tsybakov, A. (2002). Sharp adaptation for inverse problems with random noise., Probab. Theory Related Fields 123 323–354.
  • Darling, D. A. (1955). The Cramér-Smirnov test in the parametric case., Ann. Math. Statist. 26 1–20.
  • del Barrio, E., Cuesta-Albertos, J. A. and Matrán, C. (2000). Contributions of empirical and quantile processes to the asymptotic theory of goodness-of-fit tests., TEST 9 1–96.
  • Dette, H. and Hetzler, B. (2009). Khmaladze transformation of integrated variance processes with applications to goodness-of-fit testing., Math. Methods Statist. 18 97–116.
  • Durbin, J. (1973). Weak convergence of the sample distribution function when parameters are estimated., Ann. Statist. 1 279–290.
  • Evans, L. C. (2010)., Partial differential equations. Graduate Studies in Mathematics. American Mathematical Society.
  • Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems., Ann. Statist. 19 1257–1272.
  • Härdle, W. and Marron, J. S. (1985). Optimal bandwidth selection in nonparametric regression function estimation., Ann. Statist. 13 1465–1481.
  • Haywood, J. and Khmaladze, E. V. (2008). On distribution-free goodness-of-fit testing of exponentiality., J. Econometrics 143 5–18.
  • Johnstone, I. M. and Paul, D. (2014). Adaptation in some linear inverse problems., Stat 3 187–199.
  • Johnstone, I. M., Kerkyacharian, G., Picard, D. and Raimondo, M. (2004). Wavelet deconvolution in a periodic setting., J. R. Stat. Soc. Ser. B Stat. Methodol. 66 547–573.
  • Khmaladze, E. V. (1982). Martingale approach in the theory of goodness-of-fit tests., Theory Probab. Appl. 26 240–257.
  • Khmaladze, E. V. (1988). An innovation approach to goodness-of-fit tests in $R^m$., Ann. Statist. 16 1503–1516.
  • Khmaladze, E. V. (2015). Some new connections between Brownian bridges and Brownian motions., Commun. Stoch. Anal. 9 401–412.
  • Khmaladze, E. V. and Koul, H. L. (2004). Martingale transforms goodness-of-fit tests in regression models., Ann. Statist. 32 995–1034.
  • Khmaladze, E. V. and Koul, H. L. (2009). Goodness-of-fit problem for errors in nonparametric regression: Distribution free approach., Ann. Statist. 37 3165–3185.
  • Koul, H. L. and Song, W. (2010). Conditional variance model checking., J. Statist. Plann. Inference 140 1056–1072.
  • Koul, H. L., Song, W. and Zhu, X. (2018). Goodness-of-fit testing of error distribution in linear measurement error models., Ann. Statist. 46 2479–2510.
  • Kühn, T., Sickel, W. and Ullrich, T. (2014). Approximation numbers of Sobolev embeddings—Sharp constants and tractability., J. Complexity 30 95–116.
  • Mair, B. A. and Ruymgaart, F. H. (1996). Statistical inverse estimation in Hilbert scales., SIAM J. Appl. Math. 56 1424–1444.
  • Marteau, C. and Mathé, P. (2014). General regularization schemes for signal detection in inverse problems., Math. Methods Statist. 23 176–200.
  • Marzec, L. and Marzec, P. (1997). Generalized martingale-residual processes for goodness-of-fit inference in Cox’s type regression models., Ann. Statist. 25 683–714.
  • Müller, U. U., Schick, A. and Wefelmeyer, W. (2012). Estimating the error distribution function in semiparametric additive regression models., J. Statist. Plann. Inference 142 552–566.
  • Neumeyer, N. and Van Keilegom, I. (2010). Estimating the error distribution in nonparametric multiple regression with applications to model testing., J. Multivariate Anal. 101 1067–1078.
  • Politis, D. N. and Romano, J. P. (1999). Multivariate density estimation with general flat-top kernels of infinite order., J. Multivariate Anal. 68 1–25.
  • Proksch, K., Bissantz, N. and Dette, H. (2015). Confidence bands for multivariate and time dependent inverse regression models., Bernoulli 21 144–175.
  • Shorack, G. R. and Wellner, J. A. (1986)., Empirical processes with applications to Statistics. Wiley, New York.
  • Stute, W., Thies, S. and Zhu, L. (1998). Model checks for regression: an innovation process approach., Ann. Statist. 26 1916–1934.
  • Sukhatme, S. (1972). Fredholm determinant of a positive definite kernel of a special type and its application., Ann. Math. Statist. 43 1914–1926.
  • van der Vaart, A. W. and Wellner, J. A. (1996)., Weak convergence and empirical processes. With applications to statistics. Springer series in statistics. Springer-Verlag, New York.