Electronic Journal of Statistics

Tests for qualitative features in the random coefficients model

Fabian Dunker, Konstantin Eckle, Katharina Proksch, and Johannes Schmidt-Hieber

Full-text: Open access

Abstract

The random coefficients model is an extension of the linear regression model that allows for unobserved heterogeneity in the population by modeling the regression coefficients as random variables. Given data from this model, the statistical challenge is to recover information about the joint density of the random coefficients which is a multivariate and ill-posed problem. Because of the curse of dimensionality and the ill-posedness, nonparametric estimation of the joint density is difficult and suffers from slow convergence rates. Larger features, such as an increase of the density along some direction or a well-accentuated mode can, however, be much easier detected from data by means of statistical tests. In this article, we follow this strategy and construct tests and confidence statements for qualitative features of the joint density, such as increases, decreases and modes. We propose a multiple testing approach based on aggregating single tests which are designed to extract shape information on fixed scales and directions. Using recent tools for Gaussian approximations of multivariate empirical processes, we derive expressions for the critical value. We apply our method to simulated and real data.

Article information

Source
Electron. J. Statist., Volume 13, Number 2 (2019), 2257-2306.

Dates
Received: July 2018
First available in Project Euclid: 3 July 2019

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1562140822

Digital Object Identifier
doi:10.1214/19-EJS1570

Subjects
Primary: 62G10: Hypothesis testing 62G15: Tolerance and confidence regions
Secondary: 62G20: Asymptotic properties

Keywords
Gaussian approximation mode detection monotonicity multiscale statistics shape constraints Radon transform ill-posed problems

Rights
Creative Commons Attribution 4.0 International License.

Citation

Dunker, Fabian; Eckle, Konstantin; Proksch, Katharina; Schmidt-Hieber, Johannes. Tests for qualitative features in the random coefficients model. Electron. J. Statist. 13 (2019), no. 2, 2257--2306. doi:10.1214/19-EJS1570. https://projecteuclid.org/euclid.ejs/1562140822


Export citation

References

  • Adler, R. J. and Taylor, J. E. (2007)., Random fields and geometry. Springer Monographs in Mathematics. Springer, New York.
  • Andrews, D. (2001). Testing when a parameter is on the boundary of the maintained hypothesis., Econometrica, 69(3):683–734.
  • Bai, Z. D., Rao, C. R., and Zhao, L. C. (1988). Kernel estimators of density function of directional data., J. Multivariate Anal., 27(1):24–39.
  • Beran, R. (1993). Semiparametric random coefficient regression models., Ann. Inst. Statist. Math., 45(4):639–654.
  • Beran, R., Feuerverger, A., and Hall, P. (1996). On nonparametric estimation of intercept and slope distributions in random coefficient regression., Ann. Statist., 24(6):2569–2592.
  • Beran, R. and Hall, P. (1992). Estimating coefficient distributions in random coefficient regressions., Ann. Statist., 20(4):1970–1984.
  • Berry, S., Levinsohn, J., and Pakes, A. (1995). Automobile prices in market equilibrium., Econometrica, 63(4):841–890.
  • Berry, S. and Pakes, A. (2007). The pure characteristics demand model., Internat. Econom. Rev., 48(4):1193–1225.
  • Breunig, C. and Hoderlein, S. (2018). Specification testing in random coefficient models., Quantitative Economics, 9(3):1371–1417.
  • Butucea, C., Guţă, M., and Artiles, L. (2007). Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data., Ann. Statist., 35(2):465–494.
  • Chernozhukov, V., Chetverikov, D., and Kato, K. (2017). Central limit theorems and bootstrap in high dimensions., Ann. Probab., 45(4):2309–2352.
  • Davison, M. E. (1983). The ill-conditioned nature of the limited angle tomography problem., SIAM J. Appl. Math., 43(2):428–448.
  • Deaton, A. and Muellbauer, J. (1980). An almost ideal demand system., American Economic Review, 70:312–326.
  • Dubé, J.-P., Fox, J. T., and Su, C.-L. (2012). Improving the numerical performance of static and dynamic aggregate discrete choice random coefficients demand estimation., Econometrica, 80(5):2231–2267.
  • Dümbgen, L. and Spokoiny, V. G. (2001). Multiscale testing of qualitative hypotheses., Ann. Statist., 29(1):124–152.
  • Dümbgen, L. and Walther, G. (2008). Multiscale inference about a density., Ann. Statist., 36(4):1758–1785.
  • Dunker, F., Hoderlein, S., and Kaido, H. (2013). Random coefficients in static games of complete information., cemmap Working Papers, CWP12/13.
  • Dunker, F., Hoderlein, S., and Kaido, H. (2017). Nonparametric identification of random coefficients in endogenous and heterogeneous aggregate demand models., cemmap Working Papers, CWP11/17.
  • Dunker, F., Hoderlein, S., Kaido, H., and Sherman, R. (2018). Nonparametric identification of the distribution of random coefficients in binary response static games of complete information., Journal of Econometrics, 206(1):83–102.
  • Eckle, K., Bissantz, N., and Dette, H. (2017). Multiscale inference for multivariate deconvolution., Electron. J. Stat., 11(2):4179–4219.
  • Eckle, K., Bissantz, N., Dette, H., Proksch, K., and Einecke, S. (2018). Multiscale inference for a multivariate density with applications to x-ray astronomy., Annals of the Institute of Statistical Mathematics, 70(3):647–689.
  • Feuerverger, A. and Vardi, Y. (2000). Positron emission tomography and random coefficients regression., Ann. Inst. Statist. Math., 52(1):123–138.
  • Fox, J. T. and Gandhi, A. (2016). Nonparametric identification and estimation of random coefficients in multinomial choice models., The RAND Journal of Economics, 47(1):118–139.
  • Frikel, J. (2013). Sparse regularization in limited angle tomography., Appl. Comput. Harmon. Anal., 34(1):117–141.
  • Gautier, E. and Hoderlein, S. (2012). A triangular treatment effect model with random coefficients in the selection equation., cemmap Working Papers, CWP39/12.
  • Gautier, E. and Kitamura, Y. (2013). Nonparametric estimation in random coefficients binary choice models., Econometrica, 81(2):581–607.
  • Giné, E. and Guillou, A. (2001). On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervals., Ann. Inst. H. Poincaré Probab. Statist., 37(4):503–522.
  • Greenland, S. (2000). When should epidemiologic regressions use random coefficients?, Biometrics, 56(3):915–921.
  • Gustafson, P. and Greenland, S. (2006). The performance of random coefficient regression in accounting for residual confounding., Biometrics, 62(3):760–768.
  • Helgason, S. (2011)., Integral geometry and Radon transforms. Springer, New York.
  • Hoderlein, S., Holzmann, H., and Meister, A. (2017). The triangular model with random coefficients., Journal of Econometrics, 201(1):144-169.
  • Hoderlein, S., Klemelä, J., and Mammen, E. (2010). Analyzing the random coefficient model nonparametrically., Econometric Theory, 26(3):804–837.
  • Hohmann, D. and Holzmann, H. (2016). Weighted angle radon transform: Convergence rates and efficient estimation., Statistica Sinica., 26(1):157–175.
  • Holzmann, H. and Meister, A. (2019). Rate-optimal nonparametric estimation for random coefficient regression models., ArXiv:1902.05261.
  • Hsiao, C. (2014)., Analysis of Panel Data. Cambridge University Press. Cambridge Books Online.
  • Hsiao, C. and Pesaran, M. H. (2004). Random Coefficient Panel Data Models. CESifo Working Paper Series 1233, CESifo Group, Munich.
  • Ichimura, H. and Thompson, T. (1998). Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution., Journal of Econometrics, 86(2):269–295.
  • Lewbel, A. (1997). Consumer demand systems and household equivalence scales. In Pesaran, M. H. and Schmidt, P., editors, Handbook of applied econometrics, volume 2, chapter 4, pages 167–201. Blackwell, Oxford.
  • Masten, M. A. (2018). Random coefficients on endogenous variables in simultaneous equations models., The Review of Economic Studies, 85(2):1193–1250.
  • Masten, M. A. and Torgovitsky, A. (2016). Identification of instrumental variable correlated random coefficients models., The Review of Economics and Statistics, 98(5):1001–1005.
  • Nevo, A. (2001). Measuring market power in the ready-to-eat cereal industry., Econometrica, 69(2):307–342.
  • Petrin, A. (2002). Quantifying the benefits of new products: The case of the minivan., Journal of Political Economy, 110(4):705–729.
  • Proksch, K., Werner, F., and Munk, A. (2018). Multiscale scanning in inverse problems., Ann. Statist., 46(6B):3569–3602.
  • Schmidt-Hieber, J., Munk, A., and Dümbgen, L. (2013). Multiscale methods for shape constraints in deconvolution: confidence statements for qualitative features., Ann. Statist., 41(3):1299–1328.
  • Swamy, P. (1970). Efficient inference in a random coefficient regression model., Econometrica, 38(2):311–323.
  • Wieczorek, B. (2010). On optimal estimation of the mode in nonparametric deconvolution problems., Journal of Nonparametric Statistics, 22(1):65–80.
  • Wooldridge, J. (2013)., Introductory Econometrics: A Modern Approach. Cengage Learning.