Electronic Journal of Statistics

A preferential attachment model for the stellar initial mass function

Jessi Cisewski-Kehe, Grant Weller, and Chad Schafer

Full-text: Open access

Abstract

Accurate specification of a likelihood function is becoming increasingly difficult in many inference problems in astronomy. As sample sizes resulting from astronomical surveys continue to grow, deficiencies in the likelihood function lead to larger biases in key parameter estimates. These deficiencies result from the oversimplification of the physical processes that generated the data, and from the failure to account for observational limitations. Unfortunately, realistic models often do not yield an analytical form for the likelihood. The estimation of a stellar initial mass function (IMF) is an important example. The stellar IMF is the mass distribution of stars initially formed in a given cluster of stars, a population which is not directly observable due to stellar evolution and other disruptions and observational limitations of the cluster. There are several difficulties with specifying a likelihood in this setting since the physical processes and observational challenges result in measurable masses that cannot legitimately be considered independent draws from an IMF. This work improves inference of the IMF by using an approximate Bayesian computation approach that both accounts for observational and astrophysical effects and incorporates a physically-motivated model for star cluster formation. The methodology is illustrated via a simulation study, demonstrating that the proposed approach can recover the true posterior in realistic situations, and applied to observations from astrophysical simulation data.

Article information

Source
Electron. J. Statist., Volume 13, Number 1 (2019), 1580-1607.

Dates
Received: July 2018
First available in Project Euclid: 16 April 2019

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1555380051

Digital Object Identifier
doi:10.1214/19-EJS1556

Mathematical Reviews number (MathSciNet)
MR3939305

Zentralblatt MATH identifier
07056158

Keywords
Approximate Bayesian computation astrostatistics computational statistics dependent data

Rights
Creative Commons Attribution 4.0 International License.

Citation

Cisewski-Kehe, Jessi; Weller, Grant; Schafer, Chad. A preferential attachment model for the stellar initial mass function. Electron. J. Statist. 13 (2019), no. 1, 1580--1607. doi:10.1214/19-EJS1556. https://projecteuclid.org/euclid.ejs/1555380051


Export citation

References

  • Akeret, J., Refregier, A., Amara, A., Seehars, S. and Hasner, C. (2015). Approximate Bayesian Computation for Forward Modeling in Cosmology., arXiv preprint arXiv:1504.07245.
  • Ashworth, G., Fumagalli, M., Krumholz, M. R., Adamo, A., Calzetti, D., Chandar, R., Cignoni, M., Dale, D., Elmegreen, B. G., Gallagher, J. S. III Gouliermis, D. A., Grasha, K., Grebel, E. K., Johnson, K. E., Lee, J., Tosi, M. and Wofford, A. (2017). Exploring the IMF of star clusters: a joint SLUG and LEGUS effort., Monthly Notices of the Royal Astronomical Society 469 2464-2480.
  • Bally, J. and Reipurth, B. (2005)., The Birth of Stars and Planets. Cambridge University Press, New York.
  • Barabási, A.-L. and Albert, R. (1999). Emergence of Scaling in Random Networks., Science 286 509–512.
  • Bastian, N., Covey, K. R. and Meyer, M. R. (2010). A universal stellar initial mass function? A critical look at variations., Annu. Rev. Astron. Astr. 48 339–389.
  • Bate, M. R. (2012). Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation., Monthly Notices of the Royal Astronomical Society 419 3115–3146.
  • Bate, M. R. (2014). The statistical properties of stars and their dependence on metallicity: the effects of opacity., Monthly Notices of the Royal Astronomical Society 442 285–313.
  • Beaumont, M. A., Cornuet, J.-M., Marin, J.-M. and Robert, C. P. (2009). Adaptive approximate Bayesian computation., Biometrika 96 983–990.
  • Beccari, G., Petr-Gotzens, M. G., Boffin, H. M. J., Romaniello, M., Fedele, D., Carraro, G., De Marchi, G., de Wit, W. J., Drew, J. E., Kalari, V. M., Manara, C. F., Martin, E. L., Mieske, S., Panagia, N., Testi, L., Vink, J. S., Walsh, J. R. and Wright, N. J. (2017). A tale of three cities. OmegaCAM discovers multiple sequences in the color-magnitude diagram of the Orion Nebula Cluster., Astronomy & Astrophysics 604 A22.
  • Birrer, S., Amara, A. and Refregier, A. (2017). Lensing substructure quantification in RXJ1131-1231: a 2 keV lower bound on dark matter thermal relic mass., Journal of Cosmology and Astroparticle Physics 5 037.
  • Bloem-Reddy, B. and Orbanz, P. (2017). Preferential Attachment and Vertex Arrival Times., arXiv preprint arXiv:1710.02159.
  • Blum, M. G. (2010). Approximate Bayesian computation: a nonparametric perspective., J. Am. Statist. Assoc. 105 1178–1187.
  • Blum, M. G. and François, O. (2010). Non-linear regression models for approximate Bayesian computation., Stat. Comput. 20 63–73.
  • Blum, M., Nunes, M., Prangle, D. and Sisson, S. (2013). A comparative review of dimension reduction methods in approximate Bayesian computation., Stat. Sci. 28 189–208.
  • Bonnell, I. A., Clarke, C. J. and Bate, M. R. (2006). The Jeans mass and the origin of the knee in the IMF., Mon. Not. R. Astron. Soc. 368 1296–1300.
  • Cameron, E. and Pettitt, A. N. (2012). Approximate Bayesian computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift., Mon. Not. R. Astron. Soc. 425 44–65.
  • Chabrier, G. (2003a). Galactic stellar and substellar initial mass function., Publications of the Astronomical Society of the Pacific 115 763.
  • Chabrier, G. (2003b). The galactic disk mass function: reconciliation of the Hubble space telescope and nearby determinations., The Astrophysical Journal Letters 586 L133.
  • Chabrier, G. (2005). The initial mass function: from Salpeter 1955 to 2005. In, The Initial Mass Function 50 years later 41–50. Springer, The Netherlands.
  • Chaisson, E. and McMillan, S. (2011)., Astronomy today, 7th ed. Addison-Wesley.
  • Corebelli, E., Palla, F. and Zinnecker, H., eds. (2005)., The initial mass function 50 years later. Astrophysics and Space Science Library 327. Springer.
  • Da Rio, N., Robberto, M., Soderblom, D. R., Panagia, N., Hillenbrand, L. A., Palla, F. and Stassun, K. G. (2010). A multi-color optical survey of the Orion Nebula cluster. II. The HR diagram., The Astrophysical Journal 722 1092.
  • Dib, S., Schmeja, S. and Hony, S. (2017). Massive stars reveal variations of the stellar initial mass function in the Milky Way stellar clusters., Monthly Notices of the Royal Astronomical Society 464 1738-1752.
  • Dib, S., Shadmehri, M., Padoan, P., Maheswar, G., Ojha, D. K. and Khajenabi, F. (2010). The IMF of stellar clusters: effects of accretion and feedback., Mon. Not. R. Astron. Soc. 405 401-420.
  • Fearnhead, P. and Prangle, D. (2012). Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation., J. Roy. Stat. Soc. B 74 419–474.
  • Geha, M., Brown, T. M., Tumlinson, J., Kalirai, J. S., Simon, J. D., Kirby, E. N., VandenBerg, D. A., Muñoz, R. R., Avila, R. J., Guhathakurta, P. and Ferguson, H. C. (2013). The Stellar Initial Mass Function of Ultra-faint Dwarf Galaxies: Evidence for IMF Variations with Galactic Environment., The Astrophysical Journal 771 29.
  • Gómez, V., Kappen, H. J. and Kaltenbrunner, A. (2011). Modeling the Structure and Evolution of Discussion Cascades. In, Proceedings of the 22Nd ACM Conference on Hypertext and Hypermedia. HT ’11 181–190. ACM, New York, NY, USA.
  • Hahn, C., Tinker, J. L. and Wetzel, A. (2017). Star Formation Quenching Timescale of Central Galaxies in a Hierarchical Universe., Astrophysical Journal 841 6.
  • Hahn, C., Vakili, M., Walsh, K., Hearin, A. P., Hogg, D. W. and Campbell, D. (2017). Approximate Bayesian computation in large-scale structure: constraining the galaxy-halo connection., Mon. Not. R. Astron. Soc. 469 2791-2805.
  • Hansen, C. J., Kawaler, S. D. and Trimble, V. (2004)., Stellar Interiors: Physical Principles, Structure, and Evolution. Springer, New York.
  • Herbel, J., Kacprzak, T., Amara, A., Refregier, A., Bruderer, C. and Nicola, A. (2017). The redshift distribution of cosmological samples: a forward modeling approach., Journal of Cosmology and Astroparticle Physics 8 035.
  • Ishida, E., Vitenti, S., Penna-Lima, M., Cisewski, J., de Souza, R., Trindade, A., Cameron, E. et al. (2015). cosmoabc: Likelihood-free inference via Population Monte Carlo Approximate Bayesian Computation., arXiv preprint arXiv:1504.06129.
  • Jeong, H., Néda, Z. and Barabási, A.-L. (2003). Measuring preferential attachment in evolving networks., EPL (Europhysics Letters) 61 567.
  • Jose, J., Herczeg, G. J., Samal, M. R., Fang, Q. and Panwar, N. (2017). The Low-mass Population in the Young Cluster Stock 8: Stellar Properties and Initial Mass Function., The Astrophysical Journal 836 98.
  • Joyce, P. and Marjoram, P. (2008). Approximately sufficient statistics and Bayesian computation., Stat. Appl. Genet. Mol. 7 1–16.
  • Kalari, V. M., Carraro, G., Evans, C. J. and Rubio, M. (2018). The Magellanic Bridge cluster NGC 796: Deep optical AO imaging reveals the stellar content and initial mass function of a massive open cluster., ArXiv e-prints.
  • Killedar, M., Borgani, S., Fabjan, D., Dolag, K., Granato, G., Meneghetti, M., Planelles, S. and Ragone-Figueroa, C. (2018). Simulation-based marginal likelihood for cluster strong lensing cosmology., Mon. Not. R. Astron. Soc. 473 1736-1750.
  • Kroupa, P. (2001). On the variation of the initial mass function., Mon. Not. R. Astron. Soc. 322 231–246.
  • Kroupa, P., Weidner, C., Pflamm-Altenburg, J., Thies, I., Dabringhausen, J., Marks, M. and Maschberger, T. (2012). cpopulations. In, Stellar Systems and Galactic Structure, (T. D. Oswalt with I. S. McLean H. E. Bond, L. French, P. Kalas, M. A. Barstow, G. F. Gilmore and W. C. Keel, eds.). Planets, Stars, and Stellar Systems 5 115–142. Springer, Dordrecht.
  • Kunegis, J., Blattner, M. and Moser, C. (2013). Preferential Attachment in Online Networks: Measurement and Explanations. In, Proceedings of the 5th Annual ACM Web Science Conference. WebSci ’13 205–214. ACM, New York, NY, USA.
  • Lim, B., Chun, M. Y., Sung, H., Park, B. G., Lee, J. J., Sohn, S. T., Hur, H. and Bessell, M. S. (2013). The starburst cluster Westerlund 1: the initial mass function and mass segregation., Astron. J. 145 46–64.
  • Lin, C. A. and Kilbinger, M. (2015). A new model to predict weak-lensing peak counts. II. Parameter constraint strategies., Astronomy & Astrophysics 583 A70.
  • Marin, J.-M., Pudlo, P., Robert, C. P. and Ryder, R. J. (2012). Approximate Bayesian computational methods., Statistics and Computing 22 1167–1180.
  • Marjoram, P., Molitor, J., Plagnol, V. and Tavaré, S. (2003). Markov chain Monte Carlo without likelihoods., P. Natl. Acad. Sci. USA 100 15324–15328.
  • Massey, P. (2003). Massive stars in the local group: implications for stellar evolution and star formation., Annu. Rev. Astron. Astr. 41 15-56.
  • McMillan, P. J. (2016). The mass distribution and gravitational potential of the Milky Way., Monthly Notices of the Royal Astronomical Society stw2759.
  • Mitzenmacher, M. (2004). A brief history of generative models for power law and lognormal distributions., Internet mathematics 1 226–251.
  • Del Moral, P., Doucet, A. and Jasra, A. (2011). An adaptive sequential Monte Carlo method for approximate Bayesian computation., Stat. Comput. 22 1009–1020.
  • Newman, M. E. (2001). Clustering and preferential attachment in growing networks., Physical review E 64 025102.
  • Newman, M. E. (2005). Power laws, Pareto distributions and Zipf’s law., Contem. Phys. 46 323–351.
  • Offner, S. S., Clark, P. C., Hennebelle, P., Bastian, N., Bate, M. R., Hopkins, P. F., Moraux, E. and Whitworth, A. P. (2014). The origin and universality of the stellar initial mass function., Protostars and Planets VI 1 53–75.
  • Onodera, T. and Sheridan, P. (2014). Maximum likelihood estimation of preferential attachment in growing, networks.
  • Parker, A. H. (2015). The intrinsic Neptune Trojan orbit distribution: Implications for the primordial disk and planet migration., Icarus 247 112–125.
  • Peel, A., Lin, C. A., Lanusse, F., Leonard, A., Starck, J. L. and Kilbinger, M. (2017). Cosmological constraints with weak-lensing peak counts and second-order statistics in a large-field survey., Astronomy & Astrophysics 599 A79.
  • Pham, T., Sheridan, P. and Shimodaira, H. (2015). PAFit: A statistical method for measuring preferential attachment in temporal complex networks., PloS one 10 e0137796.
  • Pokhrel, R., Myers, P. C., Dunham, M. M., Stephens, I. W., Sadavoy, S. I., Zhang, Q., Bourke, T. L., Tobin, J. J., Lee, K. I., Gutermuth, R. A. et al. (2018). Hierarchical fragmentation in the Perseus molecular cloud: From the cloud scale to protostellar objects., The Astrophysical Journal 853 5.
  • Pritchard, J. K., Seielstad, M. T. and Perez-Lezaun, A. (1999). Population growth of human Y chromosomes: A study of Y chromosome microsatellites., Mol. Bio. Evol. 16 1791–1798.
  • Da Rio, N., Robberto, M., Hillenbrand, L. A., Henning, T. and Stassun, K. G. (2012). The initial mass function of the Orion Nebula Cluster across the H-burning limit., Astrophys. J. 748 1–15.
  • Robin, A., Reylé, C., Fliri, J., Czekaj, M., Robert, C. and Martins, A. (2014). Constraining the thick disc formation scenario of the Milky Way., Astronomy & Astrophysics 569 A13.
  • Salpeter, E. E. (1955). The luminosity function and stellar evolution., Astrophys. J. 121 161–167.
  • Schafer, C. M. and Freeman, P. E. (2012). Likelihood-free inference in cosmology: potential for the estimation of luminosity functions. In, Statistical Challenges in Modern Astronomy V 3–19. Springer, New York.
  • Sheridan, P., Yagahara, Y. and Shimodaira, H. (2012). Measuring preferential attachment in growing networks with missing-timelines using Markov chain Monte Carlo., Physica A: Statistical Mechanics and its Applications 391 5031 - 5040.
  • Shetty, S. and Cappellari, M. (2014). Salpeter normalization of the stellar initial mass function for massive galaxies at z $\sim $ 1., Astrophys. J. Let. 786 L10.
  • Simon, H. A. (1955). On a class of skew distribution functions., Biometrika 42 425–440.
  • Sisson, S. A., Fan, Y. and Tanaka, M. M. (2007). Sequential Monte Carlo without likelihoods., P. Natl. Acad. Sci. USA 104 1760–1765.
  • Spiniello, C., Trager, S., Koopmans, L. V. E. and Conroy, C. (2014). The stellar IMF in early-type galaxies from a non-degenerate set of optical line indices., Mon. Not. R. Astron. Soc. 438 1483–1499.
  • Tavaré, S., Balding, D. J., Griffiths, R. and Donnelly, P. (1997). Inferring coalescence times from DNA sequence data., Genetics 145 505–518.
  • Treu, T., Auger, M. W., Koopmans, L. V. E., Gavazzi, R., Marshall, P. J. and Bolton, A. S. (2010). The initial mass function of early-type galaxies., Astrophys. J. 709 1195–1202.
  • van Dokkum, P. G. and Conroy, C. (2010). A substantial population of low-mass stars in luminous elliptical galaxies., Nature 468 940.
  • Wan, P., Wang, T., Davis, R. A. and Resnick, S. I. (2017a). Fitting the linear preferential attachment model., Electron. J. Statist. 11 3738–3780.
  • Wan, P., Wang, T., Davis, R. A. and Resnick, S. I. (2017b). Are Extreme Value Estimation Methods Useful for Network Data?, arXiv e-prints arXiv:1712.07166.
  • Weisz, D. R., Fouesneau, M., Hogg, D. W., Rix, H.-W., Dolphin, A. E., Dalcanton, J. J., Foreman-Mackey, D. T., Lang, D., Johnson, L. C., Beerman, L. C. et al. (2013). The Panchromatic Hubble Andromeda Treasury IV. A probabilistic approach to inferring the high-mass stellar initial mass function and other power-law functions., Astrophys. J. 762 123–143.
  • Weisz, D. R., Johnson, L. C., Foreman-Mackey, D., Dolphin, A. E., Beerman, L. C., Williams, B. F., Dalcanton, J. J., Rix, H.-W., Hogg, D. W., Fouesneau, M. et al. (2015). The High-Mass Stellar Initial Mass Function in M31 Clusters., The Astrophysical Journal 806 198.
  • Weyant, A., Schafer, C. and Wood-Vasey, W. M. (2013). Likelihood-free cosmological inference with type Ia supernovae: approximate Bayesian computation for a complete treatment of uncertainty., Astrophys. J. 764 116–130.
  • Woosley, S. E. and Heger, A. (2015). The Deaths of Very Massive Stars. In, Very Massive Stars in the Local Universe (J. S. Vink, ed.). Astrophysics and Space Science Library 412 199.