## Electronic Journal of Statistics

- Electron. J. Statist.
- Volume 10, Number 2 (2016), 1927-1972.

### Sharp minimax tests for large covariance matrices and adaptation

Cristina Butucea and Rania Zgheib

#### Abstract

We consider the detection problem of correlations in a $p$-dimensional Gaussian vector, when we observe $n$ independent, identically distributed random vectors, for $n$ and $p$ large. We assume that the covariance matrix varies in some ellipsoid with parameter $\alpha >1/2$ and total energy bounded by $L>0$.

We propose a test procedure based on a U-statistic of order 2 which is weighted in an optimal way. The weights are the solution of an optimization problem, they are constant on each diagonal and non-null only for the $T$ first diagonals, where $T=o(p)$. We show that this test statistic is asymptotically Gaussian distributed under the null hypothesis and also under the alternative hypothesis for matrices close to the detection boundary. We prove upper bounds for the total error probability of our test procedure, for $\alpha>1/2$ and under the assumption $T=o(p)$ which implies that $n=o(p^{2\alpha})$. We illustrate via a numerical study the behavior of our test procedure.

Moreover, we prove lower bounds for the maximal type II error and the total error probabilities. Thus we obtain the asymptotic and the sharp asymptotically minimax separation rate $\widetilde{\varphi}=(C(\alpha,L)n^{2}p)^{-\alpha/(4\alpha +1)}$, for $\alpha>3/2$ and for $\alpha >1$ together with the additional assumption $p=o(n^{4\alpha -1})$, respectively. We deduce rate asymptotic minimax results for testing the inverse of the covariance matrix.

We construct an adaptive test procedure with respect to the parameter $\alpha$ and show that it attains the rate $\widetilde{\psi}=(n^{2}p/\ln\ln(n\sqrt{p}))^{-\alpha/(4\alpha +1)}$.

#### Article information

**Source**

Electron. J. Statist., Volume 10, Number 2 (2016), 1927-1972.

**Dates**

Received: November 2015

First available in Project Euclid: 18 July 2016

**Permanent link to this document**

https://projecteuclid.org/euclid.ejs/1468849967

**Digital Object Identifier**

doi:10.1214/16-EJS1143

**Mathematical Reviews number (MathSciNet)**

MR3522665

**Zentralblatt MATH identifier**

1346.62086

**Subjects**

Primary: 62G10: Hypothesis testing 62H15: Hypothesis testing

Secondary: 62G20: Asymptotic properties

**Keywords**

adaptive test covariance matrix goodness-of-fit tests high-dimensional data minimax separation rate sharp asymptotic rate U-statistic

#### Citation

Butucea, Cristina; Zgheib, Rania. Sharp minimax tests for large covariance matrices and adaptation. Electron. J. Statist. 10 (2016), no. 2, 1927--1972. doi:10.1214/16-EJS1143. https://projecteuclid.org/euclid.ejs/1468849967