Electronic Journal of Statistics

Rejoinder of “Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation”

T. Tony Cai, Zhao Ren, and Harrison H. Zhou

Full-text: Open access

Article information

Source
Electron. J. Statist., Volume 10, Number 1 (2016), 81-89.

Dates
Received: January 2016
First available in Project Euclid: 17 February 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1455715957

Digital Object Identifier
doi:10.1214/15-EJS1081REJ

Mathematical Reviews number (MathSciNet)
MR3466177

Zentralblatt MATH identifier
1331.62273

Citation

Cai, T. Tony; Ren, Zhao; Zhou, Harrison H. Rejoinder of “Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation”. Electron. J. Statist. 10 (2016), no. 1, 81--89. doi:10.1214/15-EJS1081REJ. https://projecteuclid.org/euclid.ejs/1455715957


Export citation

References

  • Barber, R. F. and M. Kolar (2015). ROCKET: Robust confidence intervals via Kendall’s tau for transelliptical graphical models., arXiv preprint arXiv:1502.07641.
  • Birnbaum, A., I. M. Johnstone, B. Nadler, and D. Paul (2013). Minimax bounds for sparse PCA with noisy high-dimensional data., The Annals of Statistics 41(3), 1055–1084.
  • Cai, T. T. and A. Zhang (2015). Minimax rate-optimal estimation of high-dimensional covariance matrices with incomplete data. Technical, report.
  • Chen, M., C. Gao, and Z. Ren (2015). Robust covariance matrix estimation via matrix depth., arXiv preprint arXiv:1506.00691.
  • Chen, X., M. Xu, and W. B. Wu (2013). Covariance and precision matrix estimation for high-dimensional time series., The Annals of Statistics 41(6), 2994–3021.
  • Fan, J., L. Xue, and H. Zou (2014). Strong oracle optimality of folded concave penalized estimation., The Annals of Statistics 42(3), 819–849.
  • Gao, C., Z. Ma, and H. H. Zhou (2014). Sparse CCA: Adaptive estimation and computational barriers., arXiv preprint arXiv:1409.8565.
  • Han, F. and H. Liu (2013). Optimal rates of convergence for latent generalized correlation matrix estimation in transelliptical distribution., arXiv preprint arXiv:1305.6916.
  • Johnstone, I. M. and A. Y. Lu (2004). Sparse principal components analysis., Technical Report, Stanford University, Dept. of Statistics. arxiv.org, 0901.4392.
  • Kolar, M. and E. Xing (2012). Consistent covariance selection from data with missing values. In J. Langford and J. Pineau (Eds.), Proceedings of the 29th International Conference on Machine Learning (ICML-12), ICML ’12, New York, NY, USA, pp. 551–558. Omnipress.
  • Li, D. and H. Zou (2014). Asymptotic properties of SURE information criteria for large covariance matrices., arXiv preprint arXiv:1406.6514.
  • Liu, H., F. Han, M. Yuan, J. Lafferty, and L. Wasserman (2012). High-dimensional semiparametric Gaussian copula graphical models., The Annals of Statistics 40(4), 2293–2326.
  • Liu, H., F. Han, and C.-h. Zhang (2012). Transelliptical graphical models. In, NIPS, pp. 809–817.
  • Loh, P.-L. and M. J. Wainwright (2012). High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity., The Annals of Statistics 40(3), 1637–1664.
  • Lounici, K. (2013). Sparse principal component analysis with missing observations. In, High Dimensional Probability VI, pp. 327–356. Springer.
  • Lounici, K. (2014). High-dimensional covariance matrix estimation with missing observations., Bernoulli 20(3), 1029–1058.
  • Mitra, R. and C.-H. Zhang (2014). Multivariate analysis of nonparametric estimates of large correlation matrices., arXiv preprint arXiv:1403.6195.
  • Tukey, J. W. (1975). Mathematics and the picturing of data. In, Proceedings of the International Congress of Mathematicians, Volume 2, pp. 523–531.
  • Wegkamp, M. and Y. Zhao (2016). Adaptive estimation of the copula correlation matrix for semiparametric elliptical copulas., Bernoulli 22(2), 1184–1226.
  • Xue, L. and H. Zou (2012). Regularized rank-based estimation of high-dimensional nonparanormal graphical models., The Annals of Statistics 40(5), 2541–2571.
  • Xue, L. and H. Zou (2013). Optimal estimation of sparse correlation matrices of semiparametric Gaussian copulas., Statistics and Its Interface 7, 201–209.
  • Xue, L. and H. Zou (2014). Rank-based tapering estimation of bandable correlation matrices., Statistica Sinica 24, 83–100.
  • Yi, F. and H. Zou (2013). SURE-tuned tapering estimation of large covariance matrices., Computational Statistics & Data Analysis 58, 339–351.

See also

  • Related item: T. Tony Cai, Zhao Ren, Harrison H. Zhou (2016). Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation. Electron. J. Statist. Vol. 10, Iss. 1, 1–59.